Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

A util python module designed for reinforcement learning. Bug reports are welcomed.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

Argument Parsing

The argument parsing utils in this package provides three features:

  1. Supporting for multiple types of config files. parse_args can parse json, yaml, or even a python config module which is imported ahead
    from UtilsRL.argparse import parse_args
    json_config = "/path/to/json"
    yaml_config = "/path/to/yaml"
    import config_module
    
    json_args = parse_args(json_config)
    module_args = parse_args(config_module)
    
  2. Nested argument parsing. We do this by introducing the NameSpace class. To be specific, if you pass convert=True to parse_args, then all of the dicts in the config file (including the argument dict itself) will be converted to a subclass of NameSpace. The contents wrapped in NameSpace can be accessed both in dict manner and in attribute manner, and they will be formatted for better illustration when printing. For example, if we define a config module as follows:
    # in config module: config_module
    from UtilsRL.misc.namespace import NameSpace
    
    batch_size = 256
    num_epochs = 10
    class TrainerArgs(NameSpace):
        learning_rate = 1e-3
        weight_decay = 1e-5
        momentum = 0.9
        
    class ActorArgs(NameSpace):
        epsilon = 0.05
        class NetArgs(NameSpace):
            layer_num = 2
            layer_nodes = 256
    
    The we import and parse it in main.py:
    import config_module
    args = parse_args(config_module)
    print(args)
    print(">>>>>>>>>>>>>>>>>>>>>>")
    print(args.trainer.learning_rate)
    
    The outputs are
    <NameSpace: args>
    |ActorArgs:     <NameSpace: ActorArgs>
                    |epsilon: 0.05
                    |NetArgs:       <NameSpace: NetArgs>
                                    |layer_num: 2
                                    |layer_nodes: 256
    |TrainerArgs:   <NameSpace: TrainerArgs>
                    |learning_rate: 0.001
                    |weight_decay: 1e-05
                    |momentum: 0.9
    |batch_size: 256
    |num_epochs: 10
    >>>>>>>>>>>>>>>>>>>>>>
    0.001
    
  3. Argument updating. We can update the parsed args with command line arguments. If the specific argument is nested, then you can use slash / to separate each NameSpace, like python main.py --TrainerArgs/momentum 0.8.
    from UtilsRL.argparse import parse_args, update_args
    import argparse
    
    # get command line arguments
    parser = arg_parse.ArgumentParser()
    _, unknown = parser.parse_known_args()
    
    # get arguments from file/config module
    args = parse_args("/path/to/file")
    
    # update with command line arguments
    args = update_args(args, unknown)
    

Monitor

Monitor listens at the main loop of the training process, and displays the process with tqdm meter.

from UtilsRL.monitor import Monitor

monitor = Monitor(desc="test_monitor")
for i in monitor.listen(range(5)):
    time.sleep(0.1)

You can register callback functions which will be triggered at certain stage of the training. For example, we can register a callback which will email us when training is done:

monitor = Monitor(desc="test_monitor")
monitor.register_callback(
    name= "email me at the end of training", 
    on = "exit", 
    callback = Monitor.email, 
    ...
)

You can also register context variables for training, which will be automatically managed by monitor. In the example below, the registered context variables (i.e. self.actor and local_var ) will be saved every 100 iters.

monitor = Monitor(desc="test_monitor", out_dir="./out")
def train():
    local_var = ...
    local_var = monitor.register_context("local_var", save_every=100)
    for i_epoch in monitor.listen(range(1000)):
        # do training
train()

As a more complex example, we can use the Monitor to resume training from a certain iteration, and restore the context variables from checkpoints:

class Trainer():
    def __init__(self):
        self.actor = ...
    
    def train(self):
        local_var = ...
        
        # load previous saved checkpoints specified by `load_path`
        self.actor, local_var = \
            monitor.register_context(["self.actor", "local_var"], load_path="/path/to/checkpoint/dir").values()
        # use `initial` to designate the start point
        for i_epoch in monitor.listen(range(1000), initial=100):
            # continue training

Logger

Logger provides a rather shallow capsulation for torch.utils.tensorboard.SummaryWriter.

from UtilsRL.logger import TensorboardLogger

# create a logger, with terminal output enabled and file logging disabled
logger = TensorboardLogger(log_dir="./logs", name="debug", terminal=True, txt=False) 

# log a sentence in color blue.
logger.log_str("This is a sentence", type="LOG")
# log sentence in color red. 
logger.log_str("Here occurs an error", type="ERROR") 

# log scalar and a dict of scalars repectively
logger.log_scala(tag="var_name", value=1.0, step=1)
logger.log_scalas(main_tag="group_name", tag_scalar_dict={
    "var1": 1.0, 
    "var2": 2.0
}, step=1)

Device and Seed Management

We provide a set of utils functions of selecting device and setting seed in UtilsRL.misc.device UtilsRL.misc.seed. Please take time and check these files.

A setup function is also available in UtilsRL.misc.__init__, which will setup the arguments with logger, device and seed which you provide.

from UtilsRL.misc import setup

setup(args, logger=None, device="cuda:0", seed=None)  # seed will be initialized randomly
setup(args, logger=None, device=None, seed="4234")  # a most free gpu will be selected as device

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.2.0.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

UtilsRL-0.2.0-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file UtilsRL-0.2.0.tar.gz.

File metadata

  • Download URL: UtilsRL-0.2.0.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for UtilsRL-0.2.0.tar.gz
Algorithm Hash digest
SHA256 1e2f8b705c4cdb986370e0f52c4a6fa6dae408710434a87e274a2af14fb3a48d
MD5 8881b689a1aece39d7e04e15091dbf0e
BLAKE2b-256 a26f4194994b461f5699b32fd6a4189447d24a0a59e908ac16527047f38819de

See more details on using hashes here.

File details

Details for the file UtilsRL-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: UtilsRL-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 4.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for UtilsRL-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8c7ab22bb342766638b7a417363acc2908f6147201c8d205885ef53a735e1155
MD5 e6fc3120373881a18b3f0b5dcad0c593
BLAKE2b-256 86fb658831b3f295009d51bb8e947cadd2ac8a5b998aadee8c0b643bbce8a80b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page