Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

See the documentation for details.

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii, @cmj2020, @paperplane03 and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.4.8.tar.gz (28.1 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.4.8-pp39-pypy39_pp73-win_amd64.whl (102.4 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.4.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (137.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.4.8-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (145.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.4.8-pp38-pypy38_pp73-win_amd64.whl (102.4 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.4.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (138.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.4.8-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (145.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.4.8-pp37-pypy37_pp73-win_amd64.whl (102.4 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.4.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (139.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.4.8-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (146.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.4.8-cp310-cp310-win_amd64.whl (102.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.4.8-cp310-cp310-win32.whl (94.5 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.4.8-cp310-cp310-musllinux_1_1_x86_64.whl (657.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.4.8-cp310-cp310-musllinux_1_1_i686.whl (718.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.4.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.4.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (149.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.4.8-cp39-cp39-win_amd64.whl (102.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.4.8-cp39-cp39-win32.whl (94.5 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.4.8-cp39-cp39-musllinux_1_1_x86_64.whl (658.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.4.8-cp39-cp39-musllinux_1_1_i686.whl (718.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.4.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (141.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.4.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (149.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.4.8-cp38-cp38-win_amd64.whl (102.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.4.8-cp38-cp38-win32.whl (94.4 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.4.8-cp38-cp38-musllinux_1_1_x86_64.whl (657.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.4.8-cp38-cp38-musllinux_1_1_i686.whl (718.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.4.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (141.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.4.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (149.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.4.8-cp37-cp37m-win_amd64.whl (103.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.4.8-cp37-cp37m-win32.whl (95.0 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.4.8-cp37-cp37m-musllinux_1_1_x86_64.whl (660.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.4.8-cp37-cp37m-musllinux_1_1_i686.whl (721.2 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.4.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (143.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.4.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (152.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.4.8.tar.gz.

File metadata

  • Download URL: UtilsRL-0.4.8.tar.gz
  • Upload date:
  • Size: 28.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for UtilsRL-0.4.8.tar.gz
Algorithm Hash digest
SHA256 e08b5aff1971e79e47ac4cb74b3de14fed1d0abf7d2370e1732ef4ba4d49485d
MD5 f0392e3583ba943952058587821d7e78
BLAKE2b-256 f89ba646c00362632eeb9d60bc051dcbdce7aabef8eadecf96ae2667d2fbd79f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c6f43fae5543f94eb297c4c89d1103d730f1c7eb9c5e322a592b9f09512d333f
MD5 92c46963ae3728df6add96598d4c541c
BLAKE2b-256 99b7fbf7d99796566d25a208c6a8fdc44e67fd21ac969bb6c5d1705905741723

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9663855c84ded47b103121c25e604e6de5e37e89101b4a32cfd2e4233f460a10
MD5 950c8d6c5da69ef2f90645ce450813a5
BLAKE2b-256 6da19b7367416c2d605b15f9c4961779657a000b002a54ae46cde9c8030c3522

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 455f17a88e3a072911a1c7e14c439c97f0f267f8cf29b5d2e9077068a6516c22
MD5 4c0566d59676f85f9852e69858dd6147
BLAKE2b-256 d1b1cd02640fda07291d65cf4cca5513302378895cf50d73328a8039aeaf728d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bda3101ae2897e5dda1f8f5394e45babcda2195031cf638cc5547ed89092d65a
MD5 8d49391bed3d367677e1237161f9b383
BLAKE2b-256 b44ae7e65824347ccf11ee51a9dc7f05f3997cf810cd6f61ddbea7ffb79f9b1a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1eb49449e61faa3a47aa502842ce712bee3126e096612f1d57ce571eed31ebc
MD5 93e5f11edcab2557924377df6b5ebd99
BLAKE2b-256 11e8e67dda26fafb6119d239ef942a4b1f54b2a7fe9de2871977763929fb8794

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d09896f40cfc808aa1b88e3c29c435efa9a5df423c70d69b710de0588c7a13a3
MD5 bcf2aedb49a0d8d9fe1571f41d064c92
BLAKE2b-256 f3de680528ad84733a2be330463201d29d2f3b6dd89aa780f14d330cfae0c1a0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 227c6528235a86b8fb6d8ddcb81ad5151843609ac6eb17c4f6cfb6df44036ea4
MD5 d9b5816bd7d30aeb2f55654036706657
BLAKE2b-256 3643a559dd13ed3cbc802c21d1d26f9fe8cb08cfafee1983420dda0e723a9eea

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a94817f9a5740193eb09091c6c6f155baedd1fea69b9b918f38373b8390e8855
MD5 daefd12fe9f5c9b2d7ead4fece1c0646
BLAKE2b-256 7f2cbd012f0e770a9d2c214a54a6504604e03d8c17865eb2bd7a405b61b86817

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 47084c5ca6857dda10d8e92fe79d0c5ded8ab0f12093c9f0147ac093604bb9a9
MD5 2b50540aa36c009c50c49a90abcd4790
BLAKE2b-256 42a1f72ebda41a374b4bd20794ace91e4dda20fcb4b5596c3c6f64b64d340ad6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.4.8-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 102.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for UtilsRL-0.4.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9a3f255d0df13dc2c0f618648d3822308b9065e76d17565b6af803ce4cbca4cc
MD5 ee0ca3e8def4f6b03412e93f646b768e
BLAKE2b-256 fcdf2e82192b5c83ade79e5c189481b391d142f9977c422a7b17e47150204c66

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.4.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 94.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for UtilsRL-0.4.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9fdbe50e556e81bd592c7c3cdd359db88ba05cee3372e83d38651eb33836cb25
MD5 6979272fe193700faffab06c265850f1
BLAKE2b-256 93086cf51efa0cd0796391585826a347c541f3830a7b3b5574eac89662022ec9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f4efa0960f11fce4bc78c2f02a81846d68ce2ba71674cdb8e94a5e12717e8923
MD5 9e1f51ea8bde797513a958d5385c14ba
BLAKE2b-256 5e52b6419426536c09a2eac525cdf565e11224d70f733bad22773c74892f21a0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 815e2467b26483e72a0a3d9426fdf60f335e176732fd2e7a153e659a3b770e47
MD5 ea9f5ebf7f10b998736060b26042b35c
BLAKE2b-256 d1cf574c44e078c5ce74a33dc7b00da418a497b76a29d51042354f8f7d1ff310

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9857e52af997dd0debd93d56d69629f94aa6c65cc288bf19b33e7a6402f90d1c
MD5 7237f710c4ba70fb2c07c84f9f1cf4e4
BLAKE2b-256 d547cf65ffc0151886bd6ba06f1daf9432ebd043ae1f510d7241a235c99abd78

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 738f3b489a92f4c8f6af672ab2caf39a45ce5ce61c652e4a8599e8b0ccd74fac
MD5 d7e3fc35a2090195799c70f7d7a6674e
BLAKE2b-256 ea5db537c9b1fc2a58f532b815976471a930860ed2dfa14508c052c92359d33c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.4.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 102.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for UtilsRL-0.4.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2fd72a8c0de770fe87f778404add6508311007c9d27768ae1b9b48e0a25d5b62
MD5 5653f9bad4767c89bdec163de5f7bd48
BLAKE2b-256 5cb2fd7b1d4fa39b42c3744d0f385bb4d604f6819a96a94c0486412883c7e9c7

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.4.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 94.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for UtilsRL-0.4.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 181a701e2f5c5d052c7f20eb9bcad4acb4880f5197a4e622d1680d94594c6d5d
MD5 ecc4c89e419ebb8d1f426069248f8a82
BLAKE2b-256 624f7113b05a2dc3b53934ad4ec7b81cbb9fd7413a749e988fc93ef8c50af95d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6155bd4966462bacc320ba37e32d03cb9990c83b8d9b6e110a087996ff8449ba
MD5 5e5c1f2ecd36f2fc3ae258528e74aa04
BLAKE2b-256 6cc18025be7e31c2470e3e0ac4bf86ed6ba53cb8a1f3a25edbef2ac3d6db62b3

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8218b2035165e65a1d049ac75db7c44c6330e8e4fd349e15938dfff3270355b2
MD5 0038d3f75354f2d0cc146667b6ea5142
BLAKE2b-256 8b71e39ac517dce2cb976ad73ad7d70d96fc6dd232735fca846b95d418b29ca0

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b83d27cb9a70789f6ae922ab6210e5fe3a4221323c014f26d9148d486684b92
MD5 6b1607ee8f80ff3484fc52001e132d0b
BLAKE2b-256 7a19e1451125776227e835f3f79135643d98b88ca5e5c0d83efbca96db639200

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ebf597c4634ee1e6f888580795a6c0c6166359978d9119bc561cd3fc091caae4
MD5 d3997f775c65b2df96c504de801b388c
BLAKE2b-256 fcb0255073d40aeb48ab4f7e9a04678278fda08ceda68614f22ca4c4e451afb8

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.4.8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 102.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for UtilsRL-0.4.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cd3527462b1e972f4513ed4ffcfea7bd60a664773112e0a319a9eacb51daaf36
MD5 b933f7344d4435e3121ad824e2380e4f
BLAKE2b-256 063d5c9a142454748ec4d13890caab9e0f8678ad54027dae37f9f2635d7e303d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.4.8-cp38-cp38-win32.whl
  • Upload date:
  • Size: 94.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for UtilsRL-0.4.8-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 abd98b69e25776f877bd6cd2525a66fe0745b84ac29dd84bb7bb196bb64113f3
MD5 eceb2d773147fb521475f1ea80b44c87
BLAKE2b-256 58b6ec694a40af8b6e8112f351254f5fd50f9cd98982d9dfdde1d09f74b333ce

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 87b798f6197633311fee2bc85502aeedb8f0db444def2f00847bc984b35c5d44
MD5 e5ec3263fdd027d252b882f8e3ffd57a
BLAKE2b-256 733a95fbb1c210a21879d9ec2dacb685c13bfc60f8d182e7436dcd882f1ce486

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 15c6f7d889e16ca3dd2a7c48c0b7776ef6e1ef7b52bfefdce3aef3540799c61b
MD5 570293056acf93a723ee45959947a66b
BLAKE2b-256 585e26741e8010e1203862bb16d95816849e7663e02ae9b79be14f0996f4bbbf

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65c390ad8fe616a1fdf058025954a99fe77b5a0c9e2edc77aabc43ae099baf88
MD5 cccdd7b97bc814529856ab1231b993b1
BLAKE2b-256 eb0911e150adb6c2832e265c11f3f08787009f938087bef4b537c6887e2528c2

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a2455ff3847af8b238f810809f0c074e0f7872edc300d641f3bf45b3fc17ac5b
MD5 7a943ece47d433b36649c64895d51b0a
BLAKE2b-256 7b32237d2413027b3430911892400905165c2aebb34d23956f5c463adc762ca9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.4.8-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 103.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for UtilsRL-0.4.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d5a5bd2fac12e1ad546986eca9275f08dc12fb7dca2de525521bdf67b83703f6
MD5 65a86c1351999487ce47b4fe775e8007
BLAKE2b-256 d82c5b2335118170ffc7eb497820ff82aa8ee4bfcffa276093664e7d2f3c8c69

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.4.8-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 95.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for UtilsRL-0.4.8-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0bee4d5228d84a4bda683138b5c9c0e43e0b183bf15ece5702d0c8fcb1d175d4
MD5 461f5bfd1ba8a658b99219eae757f21d
BLAKE2b-256 6f0f5f0e5bc665896333e06239e9a833b9d4220d6b0bf0788a38d92f78655065

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e175de35a7cebe1aec390b4b2e47ab23c46cf34774d57c5bfadb25f1ecb75a91
MD5 9607dc67b93ae502bc164b0604a21fa8
BLAKE2b-256 af111651579cca5260709d55778308ee7d16db47a59ae6b453765be830d7d67a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6e6e6ca00f6bec10384df19bcbbb61ab368356778eef258654185f674a2c8717
MD5 7403d23f8c7c3758a1184c925599fd6a
BLAKE2b-256 782eaca147f8ec17d45b587db9b3817320f48d24c4a44b4773d11a19c92fba21

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5149f952016206f1c485b3e98186df16e887bb05c555ffadfc310d05e464e35e
MD5 6cba541ff1a1096616ea0a86b3430b04
BLAKE2b-256 fbd411c0703fd3b93430fdb08fbfee16b6e6b7aae71dfa1798f42aa68c86d47e

See more details on using hashes here.

File details

Details for the file UtilsRL-0.4.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.4.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 95ff29263b204ef62cb46088bda6c57e86e99e0c03a89728c8a912468c7d3487
MD5 d9c6063e3a0f735fa8d1227e7ae84294
BLAKE2b-256 a712191c3b286c2d3bfff45aefa37fb551d29a32ee56d9cd85c8472fc991d817

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page