Skip to main content

A python module desgined for RL logging, monitoring and experiments managing.

Project description

UtilsRL

UtilsRL is a reinforcement learning utility python package, which is designed for fast integration into other RL projects. Despite its lightweightness, it still provides a full set of functions needed for RL algorithms development.

Currently UtilsRL is maintained by researchers from LAMDA-RL group. Any bug report / feature request / improvement is appreciated.

Installation

You can install this package directly from pypi:

pip install UtilsRL

After installation, you may still need to configure some other dependencies based on your platform, such as PyTorch.

Features & Usage

See the documentation for details.

Acknowledgements

We took inspiration for module design from tianshou and Polixir OfflineRL.

We also thank @YuRuiii, @cmj2020, @paperplane03 and @momanto for their participation in code testing and performance benchmarking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

UtilsRL-0.5.0b1.tar.gz (39.8 kB view details)

Uploaded Source

Built Distributions

UtilsRL-0.5.0b1-pp39-pypy39_pp73-win_amd64.whl (124.5 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (164.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (173.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b1-pp38-pypy38_pp73-win_amd64.whl (124.4 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.0b1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (173.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b1-pp37-pypy37_pp73-win_amd64.whl (124.4 kB view details)

Uploaded PyPy Windows x86-64

UtilsRL-0.5.0b1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (173.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b1-cp310-cp310-win_amd64.whl (125.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

UtilsRL-0.5.0b1-cp310-cp310-win32.whl (114.3 kB view details)

Uploaded CPython 3.10 Windows x86

UtilsRL-0.5.0b1-cp310-cp310-musllinux_1_1_x86_64.whl (687.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0b1-cp310-cp310-musllinux_1_1_i686.whl (747.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

UtilsRL-0.5.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (172.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (179.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b1-cp39-cp39-win_amd64.whl (124.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

UtilsRL-0.5.0b1-cp39-cp39-win32.whl (114.5 kB view details)

Uploaded CPython 3.9 Windows x86

UtilsRL-0.5.0b1-cp39-cp39-musllinux_1_1_x86_64.whl (687.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0b1-cp39-cp39-musllinux_1_1_i686.whl (747.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

UtilsRL-0.5.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (171.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (179.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b1-cp38-cp38-win_amd64.whl (125.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

UtilsRL-0.5.0b1-cp38-cp38-win32.whl (114.4 kB view details)

Uploaded CPython 3.8 Windows x86

UtilsRL-0.5.0b1-cp38-cp38-musllinux_1_1_x86_64.whl (687.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0b1-cp38-cp38-musllinux_1_1_i686.whl (747.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

UtilsRL-0.5.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (172.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (179.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

UtilsRL-0.5.0b1-cp37-cp37m-win_amd64.whl (125.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

UtilsRL-0.5.0b1-cp37-cp37m-win32.whl (115.2 kB view details)

Uploaded CPython 3.7m Windows x86

UtilsRL-0.5.0b1-cp37-cp37m-musllinux_1_1_x86_64.whl (690.2 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

UtilsRL-0.5.0b1-cp37-cp37m-musllinux_1_1_i686.whl (751.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

UtilsRL-0.5.0b1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (173.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

UtilsRL-0.5.0b1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (182.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file UtilsRL-0.5.0b1.tar.gz.

File metadata

  • Download URL: UtilsRL-0.5.0b1.tar.gz
  • Upload date:
  • Size: 39.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for UtilsRL-0.5.0b1.tar.gz
Algorithm Hash digest
SHA256 b2ff4b4248ec3ce5460342b9d25583e00c552ae05ea0257e4b7b2980bf68b100
MD5 918eb317dcdbec04a2e77efe7982cb72
BLAKE2b-256 4bbafb451c60ddcb8b50e783a0a2603768e4bdb4d7f1a8fa4bbf1d0bbb02726a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 37c0c806b3c69061a6ee24fad38259479634020354eaa31ced20dca5d9cc1422
MD5 a5440a1e889fea088c63893e32f5d066
BLAKE2b-256 aaaed6d22c421719b1e89872c6ec42d1a580da48e3b479f74c579ae3bb0bd927

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ebdede672006f488dee5e6ae24fd5f6390f9f49bf0c4a1047d9d25bfdee43cfb
MD5 4a00682d5f09a2db37fca737a3de616f
BLAKE2b-256 0ea0914faaedd2e47a484d2ba744d8aae29839062f70001f7501440420c1bcf1

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b38226c67fbad946c51b1b197690ae8902922e2e7baee115db8be8bc9cc4784c
MD5 9b34b3d833c702c73c9f777228419d40
BLAKE2b-256 bbdeaa8556784e14af3ee48fdec937aee674f8a8ab61a3b56a9281b37d1a3273

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bc885a50bf52d89cac38322108a838c06bb5dd6a2d27a23e5fafd33bbfaf80ac
MD5 c886618449c36afe0d3ff11d7db52c7b
BLAKE2b-256 870bb12b397592eb734a4eb4b6c977efa489c1b9d4ab4b90d4b93a7b8b2c3343

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55bf1334cd51ee783d64dea43f0a9fed97f8d2625b7e6fbbc74d82cca9d94021
MD5 c9e4ea97f7e0d7add210cf50e8597f50
BLAKE2b-256 635975326117a789d3cd87df9a29279e24696db9cead9be863faf41425efa31b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6f588ba5ee1938da16aa0f784cca35cee083916cd603a233256eb577c4086183
MD5 38c25f7a18f17a1964b3dd486c0f3086
BLAKE2b-256 c34ff56f6880ca83e4d0886fb5c13511b6115ad4001e3e328a481ae323e8338a

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7ad1dfb355d6babc09ac871a084703570560d2fa6e893f8b6216939ad26b9a5c
MD5 7ecf7bca59efe5aa87f9989dd5685b96
BLAKE2b-256 b08c4a79ae8a6093c25e05952e09440a3eb15b619366d2590dfff2a298c0c34c

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eecab3cc0fae426a0c1d9e7a2daf25d0faf53de9bdcecbe01f67cd1d0506e862
MD5 10433ad22e2ef1b5a6a1eaa1692e12e2
BLAKE2b-256 bd519be096f424a1399bfc5dde1e50159e0ebac85925bfdf8fc5a11c944cc092

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5abf52c66ed63727a0ed4ba0fa71439febb7dbcba75b5ce1a0512af836b0ba8c
MD5 acdcb6dac6f301fde592d119b9e5466c
BLAKE2b-256 086c8c15cb8658eff587db81b2e05df39d6653c0a125eb7a3edb4631dfd6c0c5

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fdaeacf86a3c102686f91409af2bf683df58f387de45cd9aa70ba9a1eacfd2f7
MD5 6134308e9157afa37bedc92f7d9dd95a
BLAKE2b-256 ae0b25693abf1d7136706522e5ec6b2232771a7aa148897c8b090284fc884e43

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp310-cp310-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 114.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for UtilsRL-0.5.0b1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 661a79149a36c75142aced3e1e58e7b73b27c855d79c728fedeb9710af828ad8
MD5 5e0b4d30a297a61527ce2dd1b055f78b
BLAKE2b-256 223655d2142ad535b98da147603eb242cba90a4ba3f8115ae196cfedd256dab3

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7440c7103548fcd61561a146c08ac2c519e6a1e5944ffbd3b672b01d09d2b28d
MD5 8933d1cad33e619bf6f445664db8219c
BLAKE2b-256 4f7e58c978a9244d05c78beb259329b9aadd0182c23a2990f0cfd410543489e9

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6b3e2ea0c3849ea39b1d270611b364c5f0ff8e3e9c251704c6dc4c16b99d90f9
MD5 ad01c6e039d60085c2d4589bdd7d3974
BLAKE2b-256 387ca8635470cd7af57f5f17a41914aa9f2909dfab8a7e5098bca815cdc1ed79

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18256b0adeb7b2d21fb29b4132c63c15428e89372d91b69809ef738831ad4ddc
MD5 0d7b93652ef496d941c72cb3989e4d26
BLAKE2b-256 dce3889ed06bf40234bfb1199465785910939dbb611dccc33c1893c17e14e3f1

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 53cbe06f2fb0c86849d13194d37980f591b78cb54afc914dd56a68d1fd393c84
MD5 a699c525b1b166bec59d2d13d7e85bb4
BLAKE2b-256 e6957da684d5f754aca9776dafeb382bb4bf2619b385415498bb12862edf8cc1

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 124.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for UtilsRL-0.5.0b1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dc0b4cf00026ec1e06d4b0d76b072d5d82111597a880fc7b2e50d7e2b58d3b7a
MD5 ce79b313022e2dccb24022499d330fe3
BLAKE2b-256 f69ce7a553efa21ca617c38959d6f239e7eeee4cc079f6e1026ae61111e1b7bf

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp39-cp39-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 114.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for UtilsRL-0.5.0b1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b3a31a3fcd6c3547000471768e50096b27b5aa5a971e7405bbe09c3079722782
MD5 a342c467046810c362a9a6e39c3d717d
BLAKE2b-256 8183461018f3e96878543f40ca57e79df956baa6a1292e159120132752ce5960

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dd7fd3e97547319b7f7610ad8f515051dd902592dc83902d92745d9fca3b33ec
MD5 f7ef369f08d699406ca81ba37abc65c7
BLAKE2b-256 e6d7acdf2cfc90f52c5b754aef0f7576723a1de5c9006977eaa2a8e5c9573286

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 29344dd7f3226cd30f6dac27afdbccdcf68229dd971f8106365f62f87783a390
MD5 27ff8ac6c23f486758d9a9e2a05e857d
BLAKE2b-256 cea8c74befe8476bee01e8c0c6116060a51179761302f083c3ec3bbab9f827d8

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c71437ecc216535f854524ea434e8978515d14407337312611cdff1cd3b02647
MD5 a8733e434823d4e82a134ee149d94ec4
BLAKE2b-256 9eb6081c7cd782a8626c37e9c68ab4792847dba8ca9f1a7e8e39063be55ff68d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ef82a4f746a40d227d227e05315d40799e9c5bff7dda26bb48893a6f92958824
MD5 06d73d49eab768d52f982daee90cc957
BLAKE2b-256 800d76908ed724a76e5b3363bbb786149aae2b8bc151f3ffa6030541bdb67bb6

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 125.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for UtilsRL-0.5.0b1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e7cf8f470376d98d030d945688497120b3d607a090d60b8edd26d4abcb72b84f
MD5 6948b130d4a59db44ade9dab1ea17f01
BLAKE2b-256 4244213ef1d671b08298ec7478bac1631a975677938a8c5cadd34ee1adc60954

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp38-cp38-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 114.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for UtilsRL-0.5.0b1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2bbcd96433dc6c1c5383c2f624d6964c7848071b2d3556ae6401ddf03bd614bb
MD5 9fa54f162cee94743b658b7a9d380e3c
BLAKE2b-256 4e17748b5f549c89a7785b7e634250809b47d2bf24ee5a806dd93419f006d7e7

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 51a7ba82ebc4297fc57d024ba011dd222ae447cc47251dc4ff2e972c45fd20b6
MD5 babfba65538aa132bddc8c5880297975
BLAKE2b-256 6eb9395061e921682d56093fab70c3783b659bc479dad048a89402aa782eb77d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f552484634106f257aa57b72b7541d8c71bc6174fb2f3d9f287d705881dd9e00
MD5 6630503e2bdd7275bc16a5518f3567bd
BLAKE2b-256 8cea3547c8bbad4c5da8e3980148a221a221323f7658cfa0568df9405855ad3d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4277b0ad3a21855c8958980dd956410cdc5f62c0d2bc0baff5977da8b0c46007
MD5 87d09362779d97a3a3677b9512f2872c
BLAKE2b-256 a1e5102e6c1497e4cb5cbcb62ec73bd21f00dd726222c45a87fb93573f47773b

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ec0f43bb61e1dccb79e8dd5eb6d66862dc6079508b23c87ec209c620660e9ed8
MD5 b86ba52fa23d634a48a33609e267e991
BLAKE2b-256 f7d786acf2ad9caa9863bdf15b9c4b2e35ae2b1946f6d602020280c35bf97d30

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 125.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for UtilsRL-0.5.0b1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 070fc4eef3f747b3a3325c43bc4c56c105732ae4ce2ea7757667342263b6dd76
MD5 bfbe3ef4b29b483cb38882b759ed3bb9
BLAKE2b-256 b16534beda3cd16fb053c12d3a2c2f2f2c2edb1a92932085f79fda519c6347dd

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: UtilsRL-0.5.0b1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 115.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for UtilsRL-0.5.0b1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 defd87033dbac35f94d632a3d3f92f9a6993e786cfd701bd10687108905b46c9
MD5 d9e0dfd33b18f96e9ac231fe727532cf
BLAKE2b-256 d22934fde11e785fb55e42a7d2e3ced1b36ce369a0eb511c9394f8cde94715a2

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 702291dfbf4202959a86d1d4dfabeaa5d01d0fe86278c41fe0c313af59cb1255
MD5 b2e78c9e1ac13c601381d509089fa7a1
BLAKE2b-256 0bb31bb9359949ef3ff6d5599d5919275436a564593684a8e0e014b8afb3de7d

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a80b0f224be6fc63d1df8201568554643707990c2149ccff34b36721b0dc9fe4
MD5 4fafe58c90d18de3572b2165b48bfe68
BLAKE2b-256 e7c7b62965324f8cb29ab16ec283f6f147918a2b5d555951611909eaeac6d97f

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f00563f08abe56d877e98a9bed28f560e8a8a2e56398417583d9742827789ce3
MD5 c7693f1524edeac433bd6000061d3af6
BLAKE2b-256 2ad605448b8822ea338691098941fc7f7d8373aa180331acd20e4a8edad21604

See more details on using hashes here.

File details

Details for the file UtilsRL-0.5.0b1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for UtilsRL-0.5.0b1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 80861b0de2f4a65178766c09b35c63a0e337e0764d837a2b679b322ec7acfdbf
MD5 8b2bb0b302cabf2dcf5659bd77ebd307
BLAKE2b-256 756a09b31bcf53f0c8fbbbfca0913dc844c8f5eab4fe53a11e1849b10ec84d15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page