acris is a python library of programming patterns that we use, at acrisel, in Python projects and choose to contribute to Python community
Project description
Overview
acris is a python library providing useful programming patterns and tools.
acris started as Acrisel’s internal idioms and utilities for programmers.
- It included:
programming idioms that are repeatedly used by programmers.
utilities that helps programmers and administrators manage their environments
We decided to contribute this library to Python community as a token of appreciation to what this community enables us.
We hope that you will find this library useful and helpful as we find it.
If you have comments or insights, please don’t hesitate to contact us at support@acrisel.com
Programming Idoms
threaded
decorator for methods that can be executed as a thread.
example
from acris import threaded from time import sleep class ThreadedExample(object): @threaded def proc(self, id_, num, stall): s=num while num > 0: print("%s: %s" % (id_, s)) num -= 1 s += stall sleep(stall) print("%s: %s" % (id_, s)) return s class RetVal(object): def __init__(self, name): self.name=name def __call__(self, retval): print(self.name, ':', retval)
example output
te1=ThreadedExample().proc(1, 3, 1) te2=ThreadedExample().proc(2, 3, 5) te1.addCallback(RetVal('te1')) te2.addCallback(RetVal('te2'))
will produce:
1: 3 2: 3 1: 4 1: 5 1: 6 te1 : 6 2: 8 2: 13 2: 18 te2 : 18
Singleton and NamedSingleton
meta class that creates singleton footprint of classes inheriting from it.
Singleton example
from acris import Singleton class Sequence(Singleton): step_id=0 def __call__(self): step_id=self.step_id self.step_id += 1 return step_id
example output
A=Sequence() print('A', A()) print('A', A()) B=Sequence() print('B', B())
will produce:
A 0 A 1 B 2
NamedSingleton example
from acris import Singleton class Sequence(NamedSingleton): step_id=0 def __init__(self, name=''): self.name=name def __call__(self,): step_id=self.step_id self.step_id += 1 return step_id
example output
A=Sequence('A') print(A.name, A()) print(A.name, A()) B=Sequence('B') print(B.name, B())
will produce:
A 0 A 1 B 0
Sequence
meta class to produce sequences. Sequence allows creating different sequences using name tags.
example
from acris import Sequence A=Sequence('A') print('A', A()) print('A', A()) B=Sequence('B') print('B', B()) A=Sequence('A') print('A', A()) print('A', A()) B=Sequence('B') print('B', B())
example output
A 0 A 1 B 0 A 2 A 3 B 1
TimedSizedRotatingHandler
Use TimedSizedRotatingHandler is combining TimedRotatingFileHandler with RotatingFileHandler. Usage as handler with logging is as defined in Python’s logging how-to
example
import logging # create logger logger = logging.getLogger('simple_example') logger.setLevel(logging.DEBUG) # create console handler and set level to debug ch = logging.TimedRotatingFileHandler() ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) # 'application' code logger.debug('debug message') logger.info('info message') logger.warn('warn message') logger.error('error message') logger.critical('critical message')
MpLogger and LevelBasedFormatter
Multiprocessor logger using QueueListener and QueueHandler It uses TimedSizedRotatingHandler as its logging handler
It also uses acris provided LevelBasedFormatter which facilitate message formats based on record level. LevelBasedFormatter inherent from logging.Formatter and can be used as such in customized logging handlers.
example
Within main process
import time import random import logging from acris import MpLogger import os import multiprocessing as mp logger=logging.getLogger(__name__) def subproc(limit=1): for i in range(limit): sleep_time=3/random.randint(1,10) time.sleep(sleep_time) logger.info("proc [%s]: %s/%s - sleep %4.4ssec" % (os.getpid(), i, limit, sleep_time)) level_formats={logging.DEBUG:"[ %(asctime)s ][ %(levelname)s ][ %(message)s ][ %(module)s.%(funcName)s(%(lineno)d) ]", 'default': "[ %(asctime)s ][ %(levelname)s ][ %(message)s ]", } mplogger=MpLogger(logging_level=logging.DEBUG, level_formats=level_formats, datefmt='%Y-%m-%d,%H:%M:%S.%f') mplogger.start() logger.debug("starting sub processes") procs=list() for limit in [1, 1]: proc=mp.Process(target=subproc, args=(limit, )) procs.append(proc) proc.start() for proc in procs: if proc: proc.join() logger.debug("sub processes completed") mplogger.stop()
Within individual process
import logging logger=logging.getLogger(__name__) logger.debug("logging from sub process")
Example output
[ 2016-12-19,11:39:44.953189 ][ DEBUG ][ starting sub processes ][ mplogger.<module>(45) ] [ 2016-12-19,11:39:45.258794 ][ INFO ][ proc [932]: 0/1 - sleep 0.3sec ] [ 2016-12-19,11:39:45.707914 ][ INFO ][ proc [931]: 0/1 - sleep 0.75sec ] [ 2016-12-19,11:39:45.710487 ][ DEBUG ][ sub processes completed ][ mplogger.<module>(56) ]
Data Types
varies derivative of Python data types
MergeChainedDict
Similar to ChainedDict, but merged the keys and is actually derivative of dict.
a={1:11, 2:22} b={3:33, 4:44} c={1:55, 4:66} d=MergedChainedDict(c, b, a) print(d)
Will output:
{1: 55, 2: 22, 3: 33, 4: 66}
ResourcePool
Resource pool provides program with interface to manager resource pools. This is used as means to funnel processing.
ResourcePoolRequestor object can be used to request resource set resides in multiple pools.
ResourcePoolRequestors object manages multiple requests for multiple resources.
Sync Example
import time from acris import resource_pool as rp from acris import Threaded import queue from datetime import datetime class MyResource1(rp.Resource): pass class MyResource2(rp.Resource): pass rp1=rp.ResourcePool('RP1', resource_cls=MyResource1, policy={'resource_limit': 2, }).load() rp2=rp.ResourcePool('RP2', resource_cls=MyResource2, policy={'resource_limit': 1, }).load() @Threaded() def worker_awaiting(name, rp): print('[ %s ] %s getting resource' % (str(datetime.now()), name ) ) r=rp.get() print('[ %s ] %s doing work (%s)' % (str(datetime.now()), name, repr(r))) time.sleep(4) print('[ %s ] %s returning %s' % (str(datetime.now()), name, repr(r))) rp.put(*r) r1=worker_awaiting('>>> w11-direct', rp1) r2=worker_awaiting('>>> w21-direct', rp2) r3=worker_awaiting('>>> w22-direct', rp2) r4=worker_awaiting('>>> w12-direct', rp1)
Sync Example Output
[ 2016-12-11 13:06:14.659569 ] >>> w11-direct getting resource [ 2016-12-11 13:06:14.659640 ] >>> w11-direct doing work ([Resource(name:MyResource1)]) [ 2016-12-11 13:06:14.659801 ] >>> w21-direct getting resource [ 2016-12-11 13:06:14.659834 ] >>> w21-direct doing work ([Resource(name:MyResource2)]) [ 2016-12-11 13:06:14.659973 ] >>> w22-direct getting resource [ 2016-12-11 13:06:14.660190 ] >>> w12-direct getting resource [ 2016-12-11 13:06:14.660260 ] >>> w12-direct doing work ([Resource(name:MyResource1)]) [ 2016-12-11 13:06:18.662362 ] >>> w11-direct returning [Resource(name:MyResource1)] [ 2016-12-11 13:06:18.662653 ] >>> w21-direct returning [Resource(name:MyResource2)] [ 2016-12-11 13:06:18.662826 ] >>> w12-direct returning [Resource(name:MyResource1)] [ 2016-12-11 13:06:18.662998 ] >>> w22-direct doing work ([Resource(name:MyResource2)]) [ 2016-12-11 13:06:22.667149 ] >>> w22-direct returning [Resource(name:MyResource2)]
Async Example
import time from acris import resource_pool as rp from acris import Threaded import queue from datetime import datetime class MyResource1(rp.Resource): pass class MyResource2(rp.Resource): pass rp1=rp.ResourcePool('RP1', resource_cls=MyResource1, policy={'resource_limit': 2, }).load() rp2=rp.ResourcePool('RP2', resource_cls=MyResource2, policy={'resource_limit': 1, }).load() class Callback(object): def __init__(self, notify_queue): self.q=notify_queue def __call__(self, resources=None): self.q.put(resources) @Threaded() def worker_callback(name, rp): print('[ %s ] %s getting resource' % (str(datetime.now()), name)) notify_queue=queue.Queue() r=rp.get(callback=Callback(notify_queue)) if not r: print('[ %s ] %s doing work before resource available' % (str(datetime.now()), name,)) print('[ %s ] %s waiting for resources' % (str(datetime.now()), name,)) ticket=notify_queue.get() r=rp.get(ticket=ticket) print('[ %s ] %s doing work (%s)' % (str(datetime.now()), name, repr(r))) time.sleep(2) print('[ %s ] %s returning (%s)' % (str(datetime.now()), name, repr(r))) rp.put(*r) r1=worker_callback('>>> w11-callback', rp1) r2=worker_callback('>>> w21-callback', rp2) r3=worker_callback('>>> w22-callback', rp2) r4=worker_callback('>>> w12-callback', rp1)
Async Example Output
[ 2016-12-11 13:08:24.410447 ] >>> w11-callback getting resource [ 2016-12-11 13:08:24.410539 ] >>> w11-callback doing work ([Resource(name:MyResource1)]) [ 2016-12-11 13:08:24.410682 ] >>> w21-callback getting resource [ 2016-12-11 13:08:24.410762 ] >>> w21-callback doing work ([Resource(name:MyResource2)]) [ 2016-12-11 13:08:24.410945 ] >>> w22-callback getting resource [ 2016-12-11 13:08:24.411227 ] >>> w22-callback doing work before resource available [ 2016-12-11 13:08:24.411273 ] >>> w12-callback getting resource [ 2016-12-11 13:08:24.411334 ] >>> w22-callback waiting for resources [ 2016-12-11 13:08:24.411452 ] >>> w12-callback doing work ([Resource(name:MyResource1)]) [ 2016-12-11 13:08:26.411901 ] >>> w11-callback returning ([Resource(name:MyResource1)]) [ 2016-12-11 13:08:26.412200 ] >>> w21-callback returning ([Resource(name:MyResource2)]) [ 2016-12-11 13:08:26.412505 ] >>> w22-callback doing work ([Resource(name:MyResource2)]) [ 2016-12-11 13:08:26.416130 ] >>> w12-callback returning ([Resource(name:MyResource1)]) [ 2016-12-11 13:08:28.416001 ] >>> w22-callback returning ([Resource(name:MyResource2)])
Requestor Example
import time from acris import resource_pool as rp from acris import Threaded import queue from datetime import datetime class MyResource1(rp.Resource): pass class MyResource2(rp.Resource): pass rp1=rp.ResourcePool('RP1', resource_cls=MyResource1, policy={'resource_limit': 2, }).load() rp2=rp.ResourcePool('RP2', resource_cls=MyResource2, policy={'resource_limit': 2, }).load() class Callback(object): def __init__(self, notify_queue): self.q=notify_queue def __call__(self, ready=False): self.q.put(ready) @Threaded() def worker_callback(name, rps): print('[ %s ] %s getting resource' % (str(datetime.now()), name)) notify_queue=queue.Queue() callback=Callback(notify_queue, name=name) request=rp.Requestor(request=rps, callback=callback) if request.is_reserved(): resources=request.get() else: print('[ %s ] %s doing work before resource available' % (str(datetime.now()), name,)) print('[ %s ] %s waiting for resources' % (str(datetime.now()), name,)) notify_queue.get() resources=request.get() print('[ %s ] %s doing work (%s)' % (str(datetime.now()), name, repr(resources))) time.sleep(2) print('[ %s ] %s returning (%s)' % (str(datetime.now()), name, repr(resources))) request.put(*resources) r1=worker_callback('>>> w11-callback', [(rp1,1),]) r2=worker_callback('>>> w21-callback', [(rp1,1),(rp2,1)]) r3=worker_callback('>>> w22-callback', [(rp1,1),(rp2,1)]) r4=worker_callback('>>> w12-callback', [(rp1,1),])
Requestor Example Output
[ 2016-12-13 06:27:54.924629 ] >>> w11-callback getting resource [ 2016-12-13 06:27:54.925094 ] >>> w21-callback getting resource [ 2016-12-13 06:27:54.925453 ] >>> w22-callback getting resource [ 2016-12-13 06:27:54.926188 ] >>> w12-callback getting resource [ 2016-12-13 06:27:54.932922 ] >>> w11-callback doing work ([Resource(name:MyResource1)]) [ 2016-12-13 06:27:54.933709 ] >>> w12-callback doing work ([Resource(name:MyResource1)]) [ 2016-12-13 06:27:54.938425 ] >>> w22-callback doing work before resource available [ 2016-12-13 06:27:54.938548 ] >>> w22-callback waiting for resources [ 2016-12-13 06:27:54.939256 ] >>> w21-callback doing work before resource available [ 2016-12-13 06:27:54.939267 ] >>> w21-callback waiting for resources [ 2016-12-13 06:27:56.936881 ] >>> w11-callback returning ([Resource(name:MyResource1)]) [ 2016-12-13 06:27:56.937543 ] >>> w12-callback returning ([Resource(name:MyResource1)]) [ 2016-12-13 06:27:56.947615 ] >>> w22-callback doing work ([Resource(name:MyResource2), Resource(name:MyResource1)]) [ 2016-12-13 06:27:56.948587 ] >>> w21-callback doing work ([Resource(name:MyResource2), Resource(name:MyResource1)]) [ 2016-12-13 06:27:58.949812 ] >>> w22-callback returning ([Resource(name:MyResource2), Resource(name:MyResource1)]) [ 2016-12-13 06:27:58.950064 ] >>> w21-callback returning ([Resource(name:MyResource2), Resource(name:MyResource1)])
Virtual ResourcePool
Like ResourcePool, VResourcePool manages resources. The main difference between the two is that ResourcePool manages physical resource objects. VResourcePool manages virtual resources (VResource) that only represent physical resources. VResources can not be activated or deactivated.
One unique property VResourcePool enables is that request could be returned by quantity.
Virtual Requestors Example
import time from acris import virtual_resource_pool as rp from acris.threaded import Threaded from acris.mplogger import create_stream_handler import queue from datetime import datetime class MyResource1(rp.Resource): pass class MyResource2(rp.Resource): pass rp1=rp.ResourcePool('RP1', resource_cls=MyResource1, policy={'resource_limit': 2, }).load() rp2=rp.ResourcePool('RP2', resource_cls=MyResource2, policy={'resource_limit': 1, }).load() class Callback(object): def __init__(self, notify_queue, name=''): self.q=notify_queue self.name=name def __call__(self,received=False): self.q.put(received) requestors=rp.Requestors() @Threaded() def worker_callback(name, rps): print('[ %s ] %s getting resource' % (str(datetime.now()), name)) notify_queue=queue.Queue() callback=Callback(notify_queue, name=name) request_id=requestors.reserve(request=rps, callback=callback) if not requestors.is_reserved(request_id): print('[ %s ] %s doing work before resource available' % (str(datetime.now()), name,)) notify_queue.get() resources=requestors.get(request_id) print('[ %s ] %s doing work (%s)' % (str(datetime.now()), name, repr(resources))) time.sleep(1) print('[ %s ] %s returning (%s)' % (str(datetime.now()), name, repr(resources))) requestors.put_requested(rps) r2=worker_callback('>>> w21-callback', [(rp1,1), (rp2,1)]) r1=worker_callback('>>> w11-callback', [(rp1,1),]) r3=worker_callback('>>> w22-callback', [(rp1,1), (rp2,1)]) r4=worker_callback('>>> w12-callback', [(rp1,1),])
Virtual Requestor Example Output
[ 2016-12-16 14:27:53.224110 ] >>> w21-callback getting resource [ 2016-12-16 14:27:53.224750 ] >>> w11-callback getting resource [ 2016-12-16 14:27:53.225567 ] >>> w22-callback getting resource [ 2016-12-16 14:27:53.226220 ] >>> w12-callback getting resource [ 2016-12-16 14:27:53.237146 ] >>> w11-callback doing work ([Resource(name:MyResource1)]) [ 2016-12-16 14:27:53.238361 ] >>> w12-callback doing work before resource available [ 2016-12-16 14:27:53.241046 ] >>> w21-callback doing work before resource available [ 2016-12-16 14:27:53.242350 ] >>> w22-callback doing work ([Resource(name:MyResource1), Resource(name:MyResource2)]) [ 2016-12-16 14:27:54.238443 ] >>> w11-callback returning ([Resource(name:MyResource1)]) [ 2016-12-16 14:27:54.246868 ] >>> w22-callback returning ([Resource(name:MyResource1), Resource(name:MyResource2)]) [ 2016-12-16 14:27:54.257040 ] >>> w12-callback doing work ([Resource(name:MyResource1)]) [ 2016-12-16 14:27:54.259858 ] >>> w21-callback doing work ([Resource(name:MyResource1), Resource(name:MyResource2)]) [ 2016-12-16 14:27:55.258659 ] >>> w12-callback returning ([Resource(name:MyResource1)]) [ 2016-12-16 14:27:55.262741 ] >>> w21-callback returning ([Resource(name:MyResource1), Resource(name:MyResource2)])
Mediator
Class interface to generator allowing query of has_next()
Example
from acris import Mediator def yrange(n): i = 0 while i < n: yield i i += 1 n=10 m=Mediator(yrange(n)) for i in range(n): print(i, m.has_next(3), next(m)) print(i, m.has_next(), next(m))
Example Output
0 True 0 1 True 1 2 True 2 3 True 3 4 True 4 5 True 5 6 True 6 7 True 7 8 False 8 9 False 9 Traceback (most recent call last): File "/private/var/acrisel/sand/acris/acris/acris/example/mediator.py", line 19, in <module> print(i, m.has_next(), next(m)) File "/private/var/acrisel/sand/acris/acris/acris/acris/mediator.py", line 38, in __next__ value=next(self.generator) StopIteration
Utilities
commdir
usage: commdir.py [-h] [--dir1 DIR1] [--dir2 DIR2] [--quiet] [--out [REPORT]] [--follow] [--detailed] [--sync-cmd] [--merge] [--total] [--ignore [PATTERN [PATTERN ...]]] Reports differences in directory structure and content. commdir.py will exit with 0 if directories found the same. otherwise, it will exit with 1. optional arguments: -h, --help show this help message and exit --dir1 DIR1 source folder for the comparison --dir2 DIR2 target folder for the comparison --quiet avoid writing any report out, default: False --out [REPORT] file to write report to, default: stdout --follow follow links when walking folders, default: False --detailed provide detailed file level diff, default: False --sync-cmd provide commands that would align dirs and files, default: False --merge when sync-cmd, set how diff commands would be resolved, default: dir1 is base. --total outputs summary. --ignore [PATTERN [PATTERN ...]] pattern to ignore example: python commdir.py --dir1 my_folder --dir2 other_folder --ignore __pycache__ .*DS_Store
commdir.py also provides access to its underlined function commdir:
commdir(dir1, dir2, ignore=[], detailed=False, followlinks=False, quiet=False, bool_result=True)
compares two directory structures and their files.
commdir walks through two directories, dir1 and dir2. While walking, it aggregates information on the difference between the two structures and their content.
If bool_result is True, commdir will return True if difference was found. When False, it would return a DiffContent namedtuple with the following fields:
diff (boolean)
folders_only_in_dir1 (list)
folders_only_in_dir2 (list)
files_only_in_dir1 (list)
files_only_in_dir2 (list)
diff_files (list)
diff_detail (list)
- Args:
dir1, dir2: two directories structure to compare. ignore: list of regular expression strings to ignore, when directory is ignored, all its sub folders are ignored too. detailed: if set, will generate detailed file level comparison. followlinks: if set, symbolic links will be followed. quiet: if set, information will not be printed to stdio. bool_result: instruct how the function would respond to caller (True: boolean or False: DiffContent)
commdir example output
---------------------------- folders only in other_folder ---------------------------- static/admin/fonts static/admin/js/vendor static/admin/js/vendor/jquery static/admin/js/vendor/xregexp ----------------------- files only in my_folder ----------------------- docs/._example.rst docs/._user_guide.rst -------------------------- files only in other_folder -------------------------- static/admin/css/fonts.css static/admin/fonts/LICENSE.txt static/admin/fonts/README.txtff static/admin/img/LICENSE static/admin/js/vendor/jquery/jquery.js static/admin/js/vendor/jquery/jquery.min.js static/admin/js/vendor/xregexp/xregexp.min.js ---------------- files different: ---------------- .pydevproject ui/settings/prod.py ui/wsgi.py personalenv.xml -------- Summary: -------- Folders only in my_folder: 0 Files only in my_folder: 2 Folders only in other_folder: 4 Files only in other_folder: 7 Files different: 4
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.