Skip to main content

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining)..

Project description

Action Rules

pypi python Build Status codecov

The package for action rules mining using Action-Apriori (Apriori Modified for Action Rules Mining).

Installation

$ pip install action-rules

Features

Action Rules API

# Import Module
from action_rules import ActionRules
import pandas as pd

# Get Data
transactions = {'Sex': ['M', 'F', 'M', 'M', 'F', 'M', 'F'],
                'Age': ['Y', 'Y', 'O', 'Y', 'Y', 'O', 'Y'],
                'Class': [1, 1, 2, 2, 1, 1, 2],
                'Embarked': ['S', 'C', 'S', 'C', 'S', 'C', 'C'],
                'Survived': [1, 1, 0, 0, 1, 1, 0],
                }
data = pd.DataFrame.from_dict(transactions)
# Initialize ActionRules Miner with Parameters
stable_attributes = ['Age', 'Sex']
flexible_attributes = ['Embarked', 'Class']
target = 'Survived'
min_stable_attributes = 2
min_flexible_attributes = 1  # min 1
min_undesired_support = 1
min_undesired_confidence = 0.5  # min 0.5
min_desired_support = 1
min_desired_confidence = 0.5  # min 0.5
undesired_state = '0'
desired_state = '1'
# Action Rules Mining
action_rules = ActionRules(
    min_stable_attributes=min_stable_attributes,
    min_flexible_attributes=min_flexible_attributes,
    min_undesired_support=min_undesired_support,
    min_undesired_confidence=min_undesired_confidence,
    min_desired_support=min_desired_support,
    min_desired_confidence=min_desired_confidence,
    verbose=True
)
# Fit
action_rules.fit(
    data=data,  # cuDF or Pandas Dataframe
    stable_attributes=stable_attributes,
    flexible_attributes=flexible_attributes,
    target=target,
    target_undesired_state=undesired_state,
    target_desired_state=desired_state,
    use_sparse_matrix=True,  # needs SciPy or Cupyx (if use_gpu is True) installed
    use_gpu=False,  # needs Cupy installed
)
# Print rules
# Example: [(Age: O) ∧ (Sex: M) ∧ (Embarked: S → C)] ⇒ [Survived: 0 → 1], support of undesired part: 1, confidence of undesired part: 1.0, support of desired part: 1, confidence of desired part: 1.0, uplift: 1.0
for action_rule in action_rules.get_rules().get_ar_notation():
    print(action_rule)
# Print rules (pretty notation)
# Example: If attribute 'Age' is 'O', attribute 'Sex' is 'M', attribute 'Embarked' value 'S' is changed to 'C', then 'Survived' value '0' is changed to '1 with uplift: 1.0.
for action_rule in action_rules.get_rules().get_pretty_ar_notation():
    print(action_rule)
# JSON export
print(action_rules.get_rules().get_export_notation())

Action Rules CLI

$ action-rules --min_stable_attributes 2 --min_flexible_attributes 1 --min_undesired_support 1 --min_undesired_confidence 0.5 --min_desired_support 1 --min_desired_confidence 0.5 --csv_path 'data.csv' --stable_attributes 'Sex, Age' --flexible_attributes 'Class, Embarked' --target 'Survived' --undesired_state '0' --desired_state '1' --output_json_path 'output.json'

Jupyter Notebook Example

https://github.com/lukassykora/action-rules/blob/main/notebooks/Example.ipynb

Credits

This package was created with Cookiecutter and the waynerv/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

action_rules-1.0.1.tar.gz (24.5 kB view details)

Uploaded Source

Built Distribution

action_rules-1.0.1-py3-none-any.whl (22.4 kB view details)

Uploaded Python 3

File details

Details for the file action_rules-1.0.1.tar.gz.

File metadata

  • Download URL: action_rules-1.0.1.tar.gz
  • Upload date:
  • Size: 24.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for action_rules-1.0.1.tar.gz
Algorithm Hash digest
SHA256 3e47674a99a861176b90b8d6231ed1ba6b3f2917406b7c194efed2fc6543d643
MD5 18893d7a0d3fd20b57579a04f073704a
BLAKE2b-256 87060d3886ee9d92cf8b0e6f98b75b13dc5c0d2658a5cf028775e5ec6244630a

See more details on using hashes here.

File details

Details for the file action_rules-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: action_rules-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 22.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for action_rules-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4a12ca9f276309fb3832676a80479c0ce6af680e4ff04bca42a28bc260bb2a3e
MD5 62d47f3a2fe376d5be2e70ce674b357a
BLAKE2b-256 362626af6a505d1ed29e82f5e7cd33b82913dc77a2001ffadb6381a27e2d79fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page