Skip to main content

A Python package for tree-based regression and classification

Project description

Fast Adaptable and Extendable Trees for Research

adaXT is a Python module for tree-based machine-learning algorithms that is fast, adaptable and extendable. It aims to provide researchers a more flexible workflow when developing tree-based models.

It is distributed under the 3-Clause BSD license.

We encourage users and developers to report problems, request features, ask for help, or leave general comments.

Website: https://NiklasPfister.github.io/adaXT

Overview

adaXT implements several tree types that can be used out-of-the-box, both as decision trees and random forests. Currently, the following tree types are implemented:

  • Classification: For prediction tasks in which the response is categorical.
  • Regression: For prediction tasks in which the response is continuous.
  • Quantile: For uncertainty quantification tasks in which the response is continuous and the goal is to estimate one or more quantiles of the conditional distribution of the response given the predictors.
  • Gradient: For tasks in which one aims to estimate (directional) derivatives of the response given the predictors. A related tree type is used in the Xtrapolation method.

Beyond these pre-defined tree types, adaXT offers a simple interface to extend or modify most components of the tree models. For example, it is easy to create a custom criteria function that is used to create splits.

Getting started

adaXT is available on pypi and can be installed via pip

pip install adaXT

Working with any of the default tree types uses the same class-style interface as other popular machine learning packages. The following code illustrates this for Regression and Quantile random forests:

from adaXT.random_forest import RandomForest
import numpy as np

# Create toy regression data
n = 100
X = np.random.normal(0, 1, (n, 2))
Y = X[:, 0] + np.random.normal(0, 1, n)
Xtest = np.c_[np.linspace(-1, 1, n), np.random.uniform(0, 1, n)]

# Task 1: Fit regression forest
rf = RandomForest("Regression")
rf.fit(X, Y)

# Predict on test data
Ypred = rf.predict(Xtest)

# Predict forest weight on X or Xtest
# -- can be used a similarity measure on the predictor space
weight_train = rf.predict_weights()
weight_test = rf.predict_weights(Xtest)

# Task 2: Fit a quantile regression
qf = RandomForest("Quantile")
qf.fit(X, Y)

# Predict 10% and 90% conditional quantile on test data
Ybdd = qf.predict(Xtest, quantile=[0.1, 0.9])

The main advantage of adaXT over existing tree-based ML packages is its modularity and extendability, which is discussed in detail in the documentation.

Project goals

This project aims to provide a flexible and unified code-base for various tree-based algorithms that strikes a balance between speed and ease with which the code can be adapted and extended. It should provide researchers a simple toolkit for prototyping new tree-based algorithms.

adaXT provides an intuitive user experience that is similar to the scikit-learn implementation of decision trees both in terms of model-based syntax and hyperparameters. Under the hood, however, adaXT strikes a different balance between speed and ease of adapting and extending the code.

Adaptable and extendable

At the heart of any tree-based algorithm is a decision tree that can be fitted on data and then used to perform some version of prediction. adaXT has therefore been designed with a modular decision tree implementation that takes four input components:

  • Criteria class: Used during fitting to determine splits.

  • LeafBuilder class: Used during fitting to specify what is saved on the leaf nodes.

  • Splitter class: Used during fitting to perform the splits.

  • Predict class: Used after fitting to make predictions.

By specifying these four components a range of different tree algorithms can be created, e.g., regression trees, classification trees, quantile regression trees and gradient trees. Additionally to this modular structure, all other operations are kept as vanilla as possible allowing users to easily change parts of the code (e.g., the splitting procedure).

Speed

As tree-based algorithms involve expensive loops over the training dataset, it is important that these computations are implemented in a compiled language. adaXT implements all computationally expensive operations in Cython. This results in speeds similar (although a few factors slower) than the corresponding scikit-learn implementations. However, due to its modular structure and the avoidance of technical speed-ups, adaXT does not intend to provide state-of-the-art speed and users mainly concerned with speed should consider more targeted implementations.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adaxt-1.3.0.tar.gz (29.2 kB view details)

Uploaded Source

Built Distributions

adaXT-1.3.0-cp313-cp313-win_amd64.whl (782.5 kB view details)

Uploaded CPython 3.13 Windows x86-64

adaXT-1.3.0-cp313-cp313-win32.whl (666.6 kB view details)

Uploaded CPython 3.13 Windows x86

adaXT-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

adaXT-1.3.0-cp313-cp313-musllinux_1_2_i686.whl (5.1 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

adaXT-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

adaXT-1.3.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

adaXT-1.3.0-cp313-cp313-macosx_11_0_arm64.whl (834.2 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

adaXT-1.3.0-cp312-cp312-win_amd64.whl (786.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

adaXT-1.3.0-cp312-cp312-win32.whl (669.1 kB view details)

Uploaded CPython 3.12 Windows x86

adaXT-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

adaXT-1.3.0-cp312-cp312-musllinux_1_2_i686.whl (5.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

adaXT-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

adaXT-1.3.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

adaXT-1.3.0-cp312-cp312-macosx_11_0_arm64.whl (846.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

adaXT-1.3.0-cp311-cp311-win_amd64.whl (791.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

adaXT-1.3.0-cp311-cp311-win32.whl (672.3 kB view details)

Uploaded CPython 3.11 Windows x86

adaXT-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

adaXT-1.3.0-cp311-cp311-musllinux_1_2_i686.whl (5.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

adaXT-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

adaXT-1.3.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (5.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

adaXT-1.3.0-cp311-cp311-macosx_11_0_arm64.whl (843.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

adaXT-1.3.0-cp310-cp310-win_amd64.whl (789.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

adaXT-1.3.0-cp310-cp310-win32.whl (674.7 kB view details)

Uploaded CPython 3.10 Windows x86

adaXT-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

adaXT-1.3.0-cp310-cp310-musllinux_1_2_i686.whl (4.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

adaXT-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

adaXT-1.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

adaXT-1.3.0-cp310-cp310-macosx_11_0_arm64.whl (842.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

File details

Details for the file adaxt-1.3.0.tar.gz.

File metadata

  • Download URL: adaxt-1.3.0.tar.gz
  • Upload date:
  • Size: 29.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for adaxt-1.3.0.tar.gz
Algorithm Hash digest
SHA256 9c6daf0cb1d5b02c922e98b38e15a3cefd0b036fe3d8b9fdb1d3c936969dc819
MD5 106c027bd86ae08b0da149231225b452
BLAKE2b-256 29f579ff596834fa5c566ca0b89fc9bb603f6b57186cee70f33e516c8f5fbd6a

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: adaXT-1.3.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 782.5 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for adaXT-1.3.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 6c1978d34e472b0280751343d90f50adf95be6f9023c9504b5d0c61ab9d0f890
MD5 a01658e6a3c864ef29f5c1db3660f720
BLAKE2b-256 83b4a2b41f03e490d864eaa2ff426b9e91e347b737d92118cdca81b66d6001aa

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: adaXT-1.3.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 666.6 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for adaXT-1.3.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 08eff43011a111346a6d723e9a2f1b595746f0c592e7561dfd702b83c8951b8b
MD5 8b74a16f52724ab8770cc36f19b1f047
BLAKE2b-256 1cb40aa7d6fe7cf33dc0f47b81116fae0019692356a8906721b09069ab8b6303

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2cab762a14fbefe8d4d360aae520803d2feb3509271a3ecac74115ff3825ef21
MD5 33d528657c0c477a949b30a1309411a8
BLAKE2b-256 42469738b19fc840a6d2535bdd75876c96e84a308249d72a8b28962974a5b0c5

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 41aed020a28ec84d247e5f724767255d7b1e5e71595770bb96e2744ccea4658a
MD5 103b5fc4338d500306f621da6fa7eba1
BLAKE2b-256 933382f56da7e7ab257e5f54f722bef2168ea19ccf95185853fe18dae2c92a2c

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72919bc217322df559174836d845a20301b374c91f5bd12e4d5593a765e1e437
MD5 55d1d2e1f468d9a72a35a04dd99b3a92
BLAKE2b-256 2039248415548e2cd8e526e08071a3eae3b31c2915d4f6a3067b45bf989244db

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1350dde338d639836e8c4cde2b1d6a54036223cf2d51726385279f16a30b6e89
MD5 e8a385a737b90975381a062958cf0322
BLAKE2b-256 f584e3e6f2562e18e0b3c5831c6a496e96d07d8e996010a873ec272c7c9f3dd7

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01a8520fd84119184f3d9e4a78623be3d26e21740aceacdfd2c902b8427f0966
MD5 9181096d99c8b920ccfffd8d8c9192f0
BLAKE2b-256 dc540a91ea2ab43dc41af63d7a5a508be6b2f6687910f8f756caa3fe5e22ca30

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: adaXT-1.3.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 786.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for adaXT-1.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8c78b2ff06dfb2facd6251359b5b08a0eb2f93bd7ecfcf6bf2b8474789815a1e
MD5 6b958fb95fac5e866f2af50472e0f9b0
BLAKE2b-256 a61cbf3a48174248772c8d4ae3703d4391eede0facdc3f23db24e069000121a3

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: adaXT-1.3.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 669.1 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for adaXT-1.3.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 3377b24e7a46ee1cfe3bdd9b841ed00abd3857172c27c3de9ddf4e3d9694cc6d
MD5 ea4d100f788724863dd2a08695d61466
BLAKE2b-256 d9545f80efcef5afa75536d1c49745fcb1e7a4bb0aede8137fcacdf39ab4b8c9

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 296f4935a0b530a285ff33c4488e742fea24c3eb2557cb2e88b57e395af02ce7
MD5 008f24fa8a060add5b884b88a0563493
BLAKE2b-256 a6e971b436394cee843428190f88fbb3cdf39dbad37649b8687fc661a7e3a7f7

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 75f476a28d3c035fcce7804dd6acf8a53f22bba588763286a6b921efe0ea63e1
MD5 9d4111279860718d7255adcd0be19cfa
BLAKE2b-256 0b57a0dfbf5b6a65ddf035094f98adc3e9daf0a926993efab02ce9262c669d4c

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c26cafbebac908dfb8f0d81a3aac6548a5cf773d19d24bc53b2a9d81af51323b
MD5 caab929a1b895211e337e2f3af34cd87
BLAKE2b-256 d3379f607362ae8ac6964bd5b637b285d8756c09268753bdd82597cdd912f9c9

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 730db12b66bff79e873ae735c633add6c85fbe629875a947d2d07588a89d134e
MD5 b01f2d80db6cf031b44d1cea2b35f4e3
BLAKE2b-256 49bb8f9647296baddf9dfe67e15431b67837b7e612bab8a5495efff1d0540f97

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7b21e570081ef78167347eda11ca008117c4ae02bf48b8ef572b1b78d47dcd36
MD5 983511aeb056841cef0ec8a0d7e6f96e
BLAKE2b-256 7dff8f7e1211bf6c11b4f231bbc9ad543cb765feaf33292b172d782547a87306

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: adaXT-1.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 791.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for adaXT-1.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ef00db13884aba5e966d76b01ef4f51e3b854f742bc4e39ad109f99c4bb12290
MD5 73c242c5e05940543f3ff0a0bc0e59d6
BLAKE2b-256 a9494ea8bdfd804eccbaff015b24e0209ab9c02905615e8db4930d7bfab81bac

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: adaXT-1.3.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 672.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for adaXT-1.3.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 806d23305edf0426c654158aea85c298200f76f3c36f548b6ebe26be7574a0e9
MD5 2a39ee85ccd60a655e78dbcac038c4fc
BLAKE2b-256 deeee7e9ab173f7d6f55b58b334382b198924e2c6e232df192a66b91501d8fba

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 589c8b92a870268a428bb8f1dd887f623b07442cdea5cf0010a1a0239afb8d38
MD5 586ec38868dd1439d295d48727e20215
BLAKE2b-256 1688d801f710060b2f30ea2bdcd5a12bdffb410062501b25c65056fe94a82926

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 3b95b8df71e9b12232bdcb3fb42050264e997c5691f28cb0c7a6320c8943d5f7
MD5 d236bf11792130af9317cd923c4754fe
BLAKE2b-256 343c8cbc6b74c3971b1f5ab779ed2579f4dcf1fbf20f4a7f5bd32da3d7818411

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34c37dee3f4431299556f0eb078f90a54bf5dd266fb2adc526797b2f96e4db06
MD5 528457ddbadf5b446890db71ca678df2
BLAKE2b-256 03dce91989fc08262fe5a0d9938cc53c0992162c8d3eadaf4ab1518af5923c10

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6751e197ab1c8080681b83783e1e8333002f2ab8900addd16aaca72799591de1
MD5 978b558205953abd4caad325ac5970c6
BLAKE2b-256 f472b91387688ed2f1932e41272765295f9c68b7ad8b2410bcde654144528a56

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 060b532a587df650032d67d59feffccbcff0e0dc8d9b9a9565c81a98514d6ef2
MD5 b0b7217000a55659f0ef05dfcb3553da
BLAKE2b-256 b1f269d1c3cc47033af6288b20564cd7fd825410abdb94c47437c4dad752facf

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: adaXT-1.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 789.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for adaXT-1.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b9acb8af0d0f173ea2c47a4018520fdf54fd2b6e44d6b73ea80486ad81b711e0
MD5 753ea58ae07413cc27ea4fda5cd76ec9
BLAKE2b-256 ba9bc475ffe9d791a8bb241a2f62d20c8f0fef2ddff71961600e28473d8b90a3

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: adaXT-1.3.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 674.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for adaXT-1.3.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 07f1b5ebcebbbc942e2d33520bb168e6cc1f1aad5cb2d1fb90cad04cb33182ee
MD5 3dcf3c25bf4e302edef9aad4b20d98e2
BLAKE2b-256 5cecadcb05317e70989840740a3567ab0417f8e4abe275a6bf11f022c16f4ec9

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fc270982a8d6d997b4c884121cb0e67a5331bef0a44686992b205f6144cc3256
MD5 df314e170d0bfdcb6ea238d4454a2ab2
BLAKE2b-256 5155f21f117edfaef960578a1ef2550635bc26c8f4837fe33605514ee3de2525

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b45c649cb4dc1b0461bec333e5c468478f806e8d72395544d026cfbd8cebf158
MD5 769a0c37d280ebc7e5975073a6abb7c9
BLAKE2b-256 169eaab559966b996a74a39e5f0f70ae647780030a8d7f66d86689f2c8f97ca1

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7ee9eaab569f45a26e85236eb0a204e78873d43ea6dd7a178111fef4434c5b8
MD5 d15e277d42aaae441ed0d325224517dc
BLAKE2b-256 4f54d3120bdb36ee67bb56aadf9f224da1e137dfb9c345638be8c132bb1c622e

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b76ed2a9ced32baba9c91e6041b1c46ba86d874f49914ff5894086d4a122755a
MD5 c8254e5b56f2b5cd294efcd5dfdfe55e
BLAKE2b-256 3122b87568694bc2f70e36441b50e0165acef06073a9cfe0d17fe8a6dfd14e78

See more details on using hashes here.

File details

Details for the file adaXT-1.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for adaXT-1.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c8af7d3b8c077573dfa65d12d1d8adfebdd744db9d3772186b91565052832591
MD5 051fd173b1c5e4f843f8a263b05faf21
BLAKE2b-256 3ae905200e76f6b370559654cb452083a22a37ff37375dbe964b8c20d9c10596

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page