Skip to main content

this is a program for fast protein structure search

Project description

ADAMS: Align Distance Matrix with SIFT algorithm enables GPU-Accelerated protein structre comparison

Requirements

opencv == 4.7.0.72

numpy >= 1.17.2

cuda > 11.x

cupy-cuda111 == 12.2.0 or same as cuda version

biopython == 1.81

scipy == 1.11.2

tqdm == 4.66.1

cuda == 11.x or same as cupy version

pickle

Installation

A pypi package coming soon. Python source code is available above

Please contact: guozy23@mails.tsinghua.edu.cn for more information

Tutorial and description

Introduction

We've developed a method to address the issue of numerous proteins exhibiting high structural similarity despite having no sequence similarities. This problem has become increasingly critical as Alphafold2 continues to predict new structures, resulting in a massive database (23TiB ver 4) that lacks an effective data mining tool.

Foldseek offers a solution by embedding local structure into the sequence and transforming this issue into a sequence alignment problem. It's significantly faster than DALI, TM-Align, and CE-Align and outperforms them on structure comparison benchmarks.

However, according to the Foldseek paper, we observed that Foldseek occasionally underperforms compared to DALI, indicating that some 'overall information' may not be captured within local structure embedding.

Our Align Distance Matrix with SIFT algorithm (ADAMS) is similar to DALI but uses an enhanced version of the renowned computer vision algorithm - Scale Invariant Feature Transform (SIFT). It extracts key features from protein distance matrices at different scales and compares their similarities. Most calculations can benefit from GPU acceleration. This zero-shot model enables more precise structure comparisons at speeds comparable to Foldseek-TM tools. Users can create their own pdb databases on PCs for all-vs-all comparisons with increased speed and reduced memory usage (approximately 500MB - 3GB GPU memory for a 20000 all vs all comparison).

The algorithm is illustrated in Fig.1: The original SIFT algorithm is applied on distance matrixes to extract detectable features across various scales. These features are represented as 128-dimension vectors which are then stacked into an n X 128 matrix for comparison between two structures using cosine similarity calculated between two feature matrices by A X B.T operation. Given these features have nearly identical lengths (512 ± 1.5), feature distances are determined by angles rather than length differences between them; thus when normalized beforehand, similarity calculation becomes straightforward on GPUs.

image

The performance metrics are as follows - it took between 3-4 seconds to search for the protein structure 'OSM-3' (699aa) within a C.elegans protein structure database (19361 structures) using an Nvidia RTX2080Ti (11GiB) GPU. When loading the entire database onto the dataset, total GPU memory usage was around 4000MB. However, when loaded separately, it only consumed about 500MB of memory. Importantly, these different methods did not impact search speed.

We tested the local version of Foldseek and found it to be ultra-fast with acceptable accuracy especially when it performed an all vs all structure clustering, as stated in their paper. Actually, it is so impressive that we almost want to give up our model. However, for high-accuracy protein structure searches at nearly the same speed, ADAMS performs better.

Tutorial

Installation
pip install adams
1. Download a pdb set and make it a cuda_database or a compatible one

coming soon

2. Match your protein structure to different databases

coming soon

3.Limit memory usage by blocking your database

coming soon

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adams-0.0.4.tar.gz (3.1 MB view hashes)

Uploaded Source

Built Distribution

adams-0.0.4-py3-none-any.whl (19.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page