advertools visualizations
Project description
adviz
Get startd quickly and see exmaples below
Install
pip install adviz
How to use
Count unique values in a list of items
value_counts_plus(list('aaaaaaaaabbbbcccddddddddddeeeeeeeeeeeeffffggghhhiijjjjkkkllllmmmmmmmnnooop'))
<style type="text/css">
#T_712df_row0_col1, #T_712df_row0_col3 {
background-color: #cebc63;
color: #000000;
}
#T_712df_row0_col2, #T_712df_row0_col4, #T_712df_row8_col1, #T_712df_row8_col3, #T_712df_row9_col1, #T_712df_row9_col3 {
background-color: #00224e;
color: #f1f1f1;
}
#T_712df_row1_col1, #T_712df_row1_col3 {
background-color: #9d9576;
color: #f1f1f1;
}
#T_712df_row1_col2, #T_712df_row1_col4 {
background-color: #293f6e;
color: #f1f1f1;
}
#T_712df_row2_col1, #T_712df_row2_col3 {
background-color: #878478;
color: #f1f1f1;
}
#T_712df_row2_col2, #T_712df_row2_col4 {
background-color: #51586d;
color: #f1f1f1;
}
#T_712df_row3_col1, #T_712df_row3_col3 {
background-color: #5e636f;
color: #f1f1f1;
}
#T_712df_row3_col2, #T_712df_row3_col4 {
background-color: #6b6d72;
color: #f1f1f1;
}
#T_712df_row4_col1, #T_712df_row4_col3, #T_712df_row5_col1, #T_712df_row5_col3, #T_712df_row6_col1, #T_712df_row6_col3, #T_712df_row7_col1, #T_712df_row7_col3 {
background-color: #013271;
color: #f1f1f1;
}
#T_712df_row4_col2, #T_712df_row4_col4 {
background-color: #787877;
color: #f1f1f1;
}
#T_712df_row5_col2, #T_712df_row5_col4 {
background-color: #888578;
color: #f1f1f1;
}
#T_712df_row6_col2, #T_712df_row6_col4 {
background-color: #979177;
color: #f1f1f1;
}
#T_712df_row7_col2, #T_712df_row7_col4 {
background-color: #a89e73;
color: #f1f1f1;
}
#T_712df_row8_col2, #T_712df_row8_col4 {
background-color: #b5a86f;
color: #f1f1f1;
}
#T_712df_row9_col2, #T_712df_row9_col4 {
background-color: #c2b369;
color: #000000;
}
#T_712df_row10_col1, #T_712df_row10_col2, #T_712df_row10_col3, #T_712df_row10_col4 {
background-color: #fee838;
color: #000000;
}
</style>
data | count | cum_count | perc | cum_perc | |
---|---|---|---|---|---|
0 | e | 12 | 12 | 16.2% | 16.2% |
1 | d | 10 | 22 | 13.5% | 29.7% |
2 | a | 9 | 31 | 12.2% | 41.9% |
3 | m | 7 | 38 | 9.5% | 51.4% |
4 | b | 4 | 42 | 5.4% | 56.8% |
5 | f | 4 | 46 | 5.4% | 62.2% |
6 | j | 4 | 50 | 5.4% | 67.6% |
7 | l | 4 | 54 | 5.4% | 73.0% |
8 | c | 3 | 57 | 4.1% | 77.0% |
9 | g | 3 | 60 | 4.1% | 81.1% |
10 | Others: | 14 | 74 | 18.9% | 100.0% |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
adviz-0.0.1.tar.gz
(9.9 kB
view details)
Built Distribution
adviz-0.0.1-py3-none-any.whl
(8.9 kB
view details)
File details
Details for the file adviz-0.0.1.tar.gz
.
File metadata
- Download URL: adviz-0.0.1.tar.gz
- Upload date:
- Size: 9.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 961eabc8ec6022d47a41a0f7cd4f4ed696571540783617763a3cead355ef17cd |
|
MD5 | 533bf3d7a54b5251f6e7814eac9a68da |
|
BLAKE2b-256 | 19150899dd06e0ba99804c56030f287d5bd7d648bcfc4403937822d4d962dddb |
Provenance
File details
Details for the file adviz-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: adviz-0.0.1-py3-none-any.whl
- Upload date:
- Size: 8.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9dd4c396a3caa67a2846e339fdf637c1b0892b9196452af84a70cf316636ba1c |
|
MD5 | b86544951d4306586e51fc24509ea817 |
|
BLAKE2b-256 | 061ffa7dbaefe76489154bd3ca1f2060c73870aad0100661f3027519b4a4dbe7 |