Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20240805-cp311-cp311-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240805-cp311-cp311-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240805-cp311-cp311-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240805-cp310-cp310-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240805-cp310-cp310-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240805-cp310-cp310-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240805-cp39-cp39-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240805-cp39-cp39-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240805-cp39-cp39-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240805-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240805-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 4e1fb5296fcd0cce5e672a3cc0d61b783dbe4e3781fc21e25be38259d46c32b6
MD5 af79cc25a1a0553f7f3eb3007a772325
BLAKE2b-256 c5fabbecfb788c4ad30257e693fe43fa66ede4f90a01408413301d7d2bd4deb1

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240805-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240805-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8bd7659aa4b5ed4e83ad72427d6db8a342a966840dbba0263124bda91daac714
MD5 6c52a68d8424875187f85fed3d0a7f7e
BLAKE2b-256 faef97ca0a6faae639e5a9a68ed981ed2342f120559078c702d76b2f7524284d

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240805-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240805-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dd2f0d0dfbcaa9e7d34c6f12c1176ecf1b6164d4ad9225f5b4c5ce20df22d495
MD5 ce0541bb7cda7281c1e61a04d984080b
BLAKE2b-256 aa27b72cc729a6842baf340d71533e8a561364a2d23aab8b56c0b9bc2b08714f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240805-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240805-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b2abf44f94545f03e0e0227356b1d4abaaa54d66f77ba474df143c36c01b44c8
MD5 755fcb4bb2fb30b0e5789f92a3f68e2f
BLAKE2b-256 dcb9f713706808e2cd6fb5f4feae04c26f450ca4ed9c302416f8db00f22aa096

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240805-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240805-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0df55e274f26e730ca5fd320bc1cb279fa56cb345c74c9528f4e72800571447f
MD5 fcc84d224465e5003ce89d5354aa7503
BLAKE2b-256 6890cc0dd5b7a29e2d1d48a55fea49dab3637293969d3fce41af9bf3cf325822

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240805-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240805-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b458020bdd061274ee6b90d95bfe22bdef63790201b2077311ec82777a45c8e7
MD5 831dcceb5f512bd8f2a7d24ddf6978be
BLAKE2b-256 1280ae7363b4d797639cb32e4cd4dddb3ca76a83b2a3bd09c46133a211985ab3

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240805-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240805-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e14c923bafffb3f015af56bdc4c483d236354d1d05e6cc5f83b2223afe02bd19
MD5 a0068e90c03a4cab514536068102034f
BLAKE2b-256 7a9748343333ca1ea06c91f0f1bb889fcf2976f620ce6b5bc8e5c18f072cc185

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240805-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240805-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 58601b715bd9ccaaf345e0732da35a12a5c75036f37ae6d483d1bf45fd56f6de
MD5 b064bbbb04e419107cb9598466a4d6d5
BLAKE2b-256 85e3f501544644a1476a7e4b7ca91d53601e660f221d2e74189a0fcf80e525e6

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240805-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240805-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 68043284649bed063f2cbf0b3dae55ebef9d26c9357b40153cf3c0777a3c96fe
MD5 fc2adcb54606986bc52f155a9f63c3f4
BLAKE2b-256 4e04b5fb2f3dd472f384009e262129c109a65582cab587fb4c5ec18cc0828d1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page