Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20240903-cp311-cp311-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240903-cp311-cp311-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240903-cp311-cp311-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240903-cp310-cp310-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240903-cp310-cp310-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240903-cp310-cp310-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240903-cp39-cp39-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240903-cp39-cp39-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240903-cp39-cp39-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240903-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240903-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 8b49eda865f3835fde1dad7b8cbec293f573d00406d7d4806919bbe2f1176367
MD5 78afaab034ec352a823b420dfffcdd1d
BLAKE2b-256 81f7e6b6f81104c0f6b6a4e99c2165789c08949ba64479a42c42c2913e9d85f8

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240903-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240903-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2c55601849d09b6ebab77c354b0c846cc8cac91e1404730790af8ef1b0eb092e
MD5 44bfdfba5d2861e3091e6b4064106086
BLAKE2b-256 babf9b6a7b854300395084e1ae04d3df029706ce1214c18baf0feecd93a771d5

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240903-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240903-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5bdd4cee0fee456ed247ff720f233a51e9a97559ed8502b7ccc8c24aa33e8943
MD5 913dc1590150679517ce0435f46ef10b
BLAKE2b-256 4bd291600cefd731b3170e935bb3fbf6a913ece37f057bb3c46111f98327b101

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240903-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240903-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 66f238bb1ec334845bfc10c9c56ec9537de43df04271f9362155958f4004b379
MD5 0064a8a975b32e4c46abebfecdf092a8
BLAKE2b-256 59bd6a55682faa9420913c1c6d709bd037d60de953e357abdc7f7e2e65fa4752

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240903-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240903-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ccb4972790d815cb8a3213fbb93012e3892693e74a10d1f59b17e4a6efdc7e33
MD5 051ef1396d55a29848674b531eb39b18
BLAKE2b-256 19a070f8641a0a2f7b9c645446f15a34da70aea07835e499d7d7668bf2822c6f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240903-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240903-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fddacf3e4d5ed2e9a7b59a6bacc47f43267ee11ecd64ee2c31c9d7af91b03c47
MD5 fd43f8bec9e7b474ee13b35862adca30
BLAKE2b-256 d332507f3d2254e06bba10511543b9255b3bc8f923875774ef11253396cc6f1a

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240903-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240903-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ec9812a9840e9a37c4e4a51fe513ebcd1311024f2bf3d57772834f33351bdfcc
MD5 51de7fbd1f81ac8388286f142f004f9a
BLAKE2b-256 d86a9fc4431c5a39f1f64e89434fb6c744b1cb42597893441edd69509865a284

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240903-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240903-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 20bc61155f692edc9c49dd97f21b1f2b4095b5e79999f610d12915084d860c7f
MD5 8ece1437c10f5248f2d80b5f7b63e59d
BLAKE2b-256 90fa589fa2c670c6a29cec83d7ee5c371ccd1cde9839573d3fbba54a27669dee

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240903-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240903-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3c278ba43101c9f4f986939c447473561a4c0716e03ab14fd5b009464620b3f9
MD5 b30d3801b3188b3a310135fe52c2b56e
BLAKE2b-256 44208ce0f8998a4abad836f6aca4a0503a1a8ea96508209627b597237bed6206

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page