Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20240905-cp312-cp312-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240905-cp312-cp312-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240905-cp312-cp312-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240905-cp311-cp311-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240905-cp311-cp311-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240905-cp311-cp311-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240905-cp310-cp310-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240905-cp310-cp310-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240905-cp310-cp310-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240905-cp39-cp39-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240905-cp39-cp39-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240905-cp39-cp39-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 0884409d4a7f6c42b06a22cc4b5c8db1d864999e9352df591e6de1c03ce3cc8e
MD5 8cb6bbd25a90c6a83fc7011c9b698a6a
BLAKE2b-256 1d8942d755ec5f0dfe27e3c8fe0da0ae25c920385af928f41c7aa6af651ad7e7

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d6c5f0429b2123df93228b02b9615335f191fa0e771c3746a0564d356fbb7c6e
MD5 d9cadb11b805c1333dee0018cf9fe783
BLAKE2b-256 48e4710037f4a95d9bc8c7d183aa2159845d7e743bca12499f50ee4ea2ce73ac

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3cddf85a45e2f32396de608a3eced9f902edf1cf0b45904fbb8afe856c2888ce
MD5 f87869888ebd03df85697411205dbcb8
BLAKE2b-256 c80aa6f09bbd88bc8e83034e372208181774461f561ed6c39e86d7a883fcdec5

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 02c00edd6490986f7e72ee3a6c14aaf07d91ea0c73f506f6d4be3b69781307b6
MD5 cbd70086b2d5f7641f569df77a71e55a
BLAKE2b-256 863d00f02df35202ebdbb72092fab0f94615df7ab934a79b818997e9754fbf70

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f419bd6c2e91ae456e7ee56d9b5dc5197da4f6f3cb89918cc492b14fe0cb352d
MD5 0bb395bb0744d5c7adf68e8df5009f5c
BLAKE2b-256 498c33d1a5daafcefef10d945e4ec27da657a9ca3c6b982717a146cecee3cd10

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6a4b4ea992e8f1d296aa474155bcff3faea24895eb43baca7fdeb60d2cd062b5
MD5 139dc2d3765979d5012177bf987c3923
BLAKE2b-256 861339835282f54cc3ae2a3a16c4171ee60d9f2ece7e3889e70e34027b4c6fcc

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 20358b62dcfefa565326f83bb2c32d3bc406e5c3303a48b971b2dc27eb9a2a29
MD5 450881c9d1b08ce10d659af5c00f1371
BLAKE2b-256 a15e5086623f7e4f5b97ac8c668c18dbfde98a3764ed178e8887ef155ec4d007

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3500c200411d38a9e94bf4f2ee9670ef6b96328ed420f564f3ecacef6cefc7eb
MD5 153e04470a7cd0971474e4efdfe8838b
BLAKE2b-256 3e7c4f738ce4030dd0147fb93375822ea8fe4877f3fb15e4844f8eace586eea3

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e3e66b8cd84a8ef2ec5b6a6fe5b056c5fdb0bcee53b1de5233e917cb5fe9485f
MD5 494799582408893fac2ac2f4f0e35dfe
BLAKE2b-256 0af5afba098c1e5e783f3e0debd305f1657bc87d0ba2f483a6a62899f59d4830

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e61354d96ae7bcece37aa447ab6c564dcfcfd166dc32706e764c7aae1ac73db6
MD5 e51d76b31f16d42ffd63cd6b51ea90ad
BLAKE2b-256 96203db00556b8b874291b201d48619cf7746a2e33b3292a128740c3529440b7

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e780817b49b75119a02f9325ebe12bc17249118ed675a9023b6590a46537bb18
MD5 cce072f0ae75211b51382c51b738aa1b
BLAKE2b-256 407beaa5acd24a0e64027e185b41c06c52da3613e08a60619e3c7d8bd5fa3086

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240905-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240905-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9ed83a30c16b9faace262df81c995eb437240e49525c86c652654ac231820c2a
MD5 aa6225ce6c647eab6f12b734614282a2
BLAKE2b-256 533441355a345a1e368b8068243a2fcdee24a5aef32a22bf1de95436e2b7cab3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page