Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20240906-cp312-cp312-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240906-cp312-cp312-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240906-cp312-cp312-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240906-cp311-cp311-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240906-cp311-cp311-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240906-cp311-cp311-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240906-cp310-cp310-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240906-cp310-cp310-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240906-cp310-cp310-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240906-cp39-cp39-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240906-cp39-cp39-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240906-cp39-cp39-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 7f2f94cd04180b2d8cbed34ed19d47ccd1426db0508a90cbdd80196c8fc03c7d
MD5 b21fc3ef41bd2dd67c44ce6216ee8153
BLAKE2b-256 ec0bdd35b9e166a057d2a4a425606e7bfca5acc1ce0d9d2aa134f9fe02a65c37

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 89e4c7a228c70e3b3361b1e57e6388ea6d650f7e0af4e992aa890f50b2b6b596
MD5 81a94fb515379152410fac771237cfde
BLAKE2b-256 23aeb7c1e34ef500bf433100fcf10b7cd7ee61980b6e7a7ccfb9fdca5520a6f1

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 94a878264f37007c8a69c0c09a515b1dc80891632f4932e7f5d64833fe4beecc
MD5 cd32d43493915528bc019021bc7edc72
BLAKE2b-256 522c121be6b5b4d3bfa1c046dc782ff571d789dc2a3d014c6544126de5f01d93

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 a50f495e6f515de941bc8a697edce9b8f5e92b602f520a104148bfbe041def01
MD5 7e29eb957595684f5018e3d7856115d4
BLAKE2b-256 44f80d299c388cc94c900bf008fc9c27801bef1307db72f32b52f495809d0acc

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 29b78aae24f92febdb817b165fbf0d264c95e863bfbaec4cca1cde51446a3dc6
MD5 cf70e432d62c6e4497da8ab18aa16c65
BLAKE2b-256 b1442cfa2eb5dc8c32cdc0cda644fc535795705ff8cf11025b7b342099455cea

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c197154ce90ac06d5625100c81141af80dedf8b734cf2a344ad12d1be3047d77
MD5 34e0c6f04b9f2e8ba3629ccec12b770a
BLAKE2b-256 6f360c5a14f222888b7a76eafd578c3702e449f0177d075e11463bf2e509442e

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 8e262269370d0b5e681c31de2538191d3d645e96a6b07c4a797276ae91609c6a
MD5 1c47efc603af5ee387338e85fb6f61ca
BLAKE2b-256 5a419a0efeb69a2dd377299bb4cc034cf38c47b607c7479416374f542567bde6

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3c3d0e36f6fea2a8a10833c595e8cda00e71e72932137c912dd548ce8b17c8a9
MD5 16ab56549aa42bec91bd0e2f9335dca3
BLAKE2b-256 32fd33e822a88e5669bcc5d9f2ab6759f4407695425389aa660e28931631d855

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 caa32d2461466c73bdb7e4b3e0b52c82742f8908a7c18214b83963cceffdb39c
MD5 147e4e95d32f9b968184387b0f2974ec
BLAKE2b-256 b561caaa8fc5ec162d0efa4eda9b987e2a5768c7d6d6a8cf1b821e7f5039dd6b

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d9a0e80c58e16e7835d450403b1b51533a9af21b337a36ac9fceceb8f224b1e7
MD5 37c81f032c89900d16de0cd9c9162805
BLAKE2b-256 4b6a4c00a9ae9e162e44124cc5202ef13166104038a4e268d686b4b207d6e093

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 518727f2f6eedc22738de40d7f8ba1dba2f6260ecb504192e544da93aeb338dc
MD5 eda0f42e58ddee777ac97537c35dba5e
BLAKE2b-256 f747ec5c419ce78f59905f8b155882456502d26f78c9e3e1c88968bf29b243e7

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240906-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240906-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1f64a30564833aef795d494f93da46bc04f53614a5c3595181d0bda28eb7e66a
MD5 e37b829d213c1096e31a395bc2b9c18a
BLAKE2b-256 0d7148ae12e1711a39f30f92badb162335f9ca205dfd915dfde38882714fe221

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page