Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20240911-cp312-cp312-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240911-cp312-cp312-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240911-cp312-cp312-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240911-cp311-cp311-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240911-cp311-cp311-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240911-cp311-cp311-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240911-cp310-cp310-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240911-cp310-cp310-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240911-cp310-cp310-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240911-cp39-cp39-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240911-cp39-cp39-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240911-cp39-cp39-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3c069750394d11d62da73960894f78c968db51675d4c675c2ee942b8e8139979
MD5 9560275c8f81d0cb2adcf1f535241803
BLAKE2b-256 f9913a12b276109afc9eb383290fa4725cece3771be806aecd2c6ad117c03edd

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 29b9cb719d528f3fe0ec4433476861e7f8ead25425b4c237b0195dbc8175bf21
MD5 05beff341af8cc55a307a78f3bc8646c
BLAKE2b-256 bc364cd9fcaa7507c73bf7ccb39df7b148f3e0d395a0da86b6215149966228dc

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 137a24098e4fb156c912c53b2ed52a99b334c6bafbc182e5d354c568fe055513
MD5 d22ea639b38631efa7bf59c50d1f2e14
BLAKE2b-256 58c18487835db50527f30c364205d1f9bfc3982d18557e035f2b5d06ea2d5a25

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ab296cb13fd55424fd8555cfa99173f517cec5ce3183ac23a53e2c09654b85a9
MD5 f5ce3a8e29f5d8f4de0175fe851499a6
BLAKE2b-256 bb064ef9ade28e739cbd0f6281c5977d5edcca51d63a19868701eac54f5a2107

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ededd2fa100f543df8f881c774421009c2cf6014030cfd9a48238b223fa4038d
MD5 977e727b33e91ae3d3eed223417688e1
BLAKE2b-256 44c4d5f4dff45c5467c07b85560d4f4f6fc80d7760439558799f640e6b269d23

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 15bb08d084c5492ecfafd1afcc85a203ea9f99292e8189484366aa73756cc319
MD5 76b5ce0d6bc003ffffdd1810d8e6c695
BLAKE2b-256 ca4afcde3489d2ec1a89e8bd5918c7176b73486d5367a0924334b41e7a5f934a

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 31772bd64ece1b2d8660023e5e03f0d78c1f3fec454cace50e6e058f53e03c3e
MD5 bb33470e71d4818f80ebfee63098dac6
BLAKE2b-256 7cc679fed903116f77a6187fb780b3d84702723edece8a96985bb03e003e3882

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 16b329bdd1fa9622b155b2048b971920dfe0f76dc880a13f95cb0bc5e7172b29
MD5 fbf1da477a8c64a635b886a0794307c3
BLAKE2b-256 7299df2869109e4b286f5374ccdb0a38cfb5c2ddeab246581766ea652ca73c33

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 414f5006384bf3ad4df6be382874f7101198df2c9f26a3d458effce5ab353a8c
MD5 054da30ec593886ce57ac45d88d03afc
BLAKE2b-256 88556db128792a5c99c6302171364f1cb87207289c513610a8da8bf1f583d1de

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 90e4141ab8f7a5f8cfc9e7d35ee9c68dc1f6f95839209327429251048b789ffc
MD5 42da70ef3875a7094f23d1d5f8fb6d96
BLAKE2b-256 3404ce91321c1c6e74f526e90feeae88ece139cf8161fa509eede6156d6c5bba

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3ad887ea296de768d047d7264ef1215034cca996dc714af09c674969c091079e
MD5 bf67cd6dbb416ee2a09549866bb0342f
BLAKE2b-256 52ebc645171cba5c89f15b872a7995e5f8c7eb19ab4dfce4c9311d648d8e4138

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240911-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240911-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b89e08d11caecd46ee2e1117e459f28f18482c96907ffbf7ac3829e46d4f7df6
MD5 a8878ee49d18ca00fb49d1892f66c2ec
BLAKE2b-256 7aae011c4e0512711410153112dd1a2da718c10d8899d085ab555839e92abc29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page