Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20240913-cp312-cp312-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240913-cp312-cp312-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240913-cp312-cp312-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240913-cp311-cp311-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240913-cp311-cp311-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240913-cp311-cp311-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240913-cp310-cp310-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240913-cp310-cp310-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240913-cp310-cp310-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240913-cp39-cp39-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240913-cp39-cp39-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240913-cp39-cp39-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 16e0a73154bab65bdf97cf44fa56812e58d070c3604f16e4255e342eda1e1d2c
MD5 b5b550b755965000a9050c884de24d0e
BLAKE2b-256 3377911d67e162aeee1369bbff00ae3a99a094514d2fce42fdc3bdcf6a068088

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 16e268a17b239596e15276047b4d7b637ab2bc2c694c6b1a23b99e13fd7643d9
MD5 35aedbb4c2c78f5d02eaa8086a63fa96
BLAKE2b-256 a64014d7365e7277966245c90c00079aeee3a963cd31c62acf5008ba0d5f0809

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 44bc51a196c8190ffd9810503334ca0e6e4e0d069735c8706bcf0441ff27f0af
MD5 9ec1ffae75585ef6d5aa6f3c1fdec983
BLAKE2b-256 b4e2992317346dda294cae30ab5249a388c62e8736a8c0ad14f978f7f012c8a7

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 db3a0c8ddf94bbbaef06503782ba2db204570da4404200148998f265b8ef7c7e
MD5 7419d62fd2636a4858926c72c40601d7
BLAKE2b-256 5ddaa3d00ccf314ba2b2715e9efb602e075cbf609ecccf9252e18d796b8708b5

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a584487e6526c38faed38a05148eed00499b1e7cee4482b354e21a38318c289e
MD5 0d49284b0091a0ff4f6da23f8ba65f97
BLAKE2b-256 5d631086a9ca73ddf8527b2ce20252495001cd3d6d6945c83b72dfa60d2264bc

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 65dbee07c7b60c24bd52a73e40e5ed8dd957373cdbd4549f6dfccdadf14f755a
MD5 6b1416bb02f16a39b0f2380711d52450
BLAKE2b-256 1f4deff0ec621d217d85a0f7a0bca6c1ab87c6a9c5ea8fbf82046e008928df05

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 f173575f62564fefd004a7788b97d1b8a5f3d61f533c54f48aa73d04a44377cf
MD5 4093472a0c6bda52838c786cdb2a38e6
BLAKE2b-256 eb0f12bcf5da0c7f33d51b5a74160a1587418e6551fafa951e1c56926ba8932b

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2a2e7be8f89b1dde64bc760596f363ba5adc55d286e1988e7e6e429d02da894d
MD5 78d895cfc01f3a3e9b5d6a7ed71f7e56
BLAKE2b-256 bd85a7f84d0c7d740fba707f99353736b107d071134cec084b7fd047bcdb4342

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 206c61e871010dd121fa9c8aba0cd9c3460239ea244369d3a7f129695ab3a90b
MD5 c83d776e3ba325cfcbd2281eea9800ca
BLAKE2b-256 554d593d8cb89379ce997643a7d906493961d56529bb02014e669c08ba09ba1b

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 7595173fae7c9bfb662806577f7602236df6959aa1297bd719cf71d1a583cb70
MD5 af95cd1b9a772770cbfac3fbfe02f711
BLAKE2b-256 82a7cf2c61c819d9466eea80b9a92d4f35dc2bf4d926d07b8373cb5305d8ba29

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 fd321412a18cb52471a6e249368fe81f7f8fe2d4ed3358056850d436dbc00724
MD5 bf624ee96ee5c793555c769fcdf99c9b
BLAKE2b-256 461c5bcaa217ffdb0e83e5f9a8790798497c86b7572b9de4323547ae36c59657

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240913-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240913-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bf1be45d761f215ea8eaa2ab2b0a32b8591f215ed66ed2caca30a00bdad7196f
MD5 66ffbe6d2b5faf297ab0974a63d3b519
BLAKE2b-256 eee4885d0838013a89c1d6cdaf1a78a04c796c0cf7a677d90f2fb6b6bf04a06e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page