Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20240916-cp312-cp312-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240916-cp312-cp312-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240916-cp312-cp312-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240916-cp311-cp311-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240916-cp311-cp311-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240916-cp311-cp311-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240916-cp310-cp310-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240916-cp310-cp310-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240916-cp310-cp310-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240916-cp39-cp39-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240916-cp39-cp39-macosx_12_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240916-cp39-cp39-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 cee383db93b17cd111476dd52ca27c71670f826b14d9e52a24937aa7f7527e2d
MD5 95132675a23eaca8cbda8215a23a4ac5
BLAKE2b-256 01a848b51e2a9a8eb66d1fe8e935288aeade99932ce4cf9e27f3da4109499b3f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8f89970664e60bc7d1283c6d5ffdca40f9c26eee40699556cd751c886ba46f66
MD5 e2714edd9f892c6d35f8aa2e397ddefd
BLAKE2b-256 ebe4247538c730cffd22b8ef54143d9cc99c266bdcbde9291aa33ac48e74d901

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 58e298b1e91f0f4fc6d9fe071c45b7de6edd4de7e3cf347a9a4dd05d62ffc94c
MD5 4224b98b90ffec007425eb296dcaeaca
BLAKE2b-256 77d3cb5a8f9634ff31c099cdfce4f850a1a1485f57eb98bb4c85b8fd9e2b931b

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 69b6161d2d561e24122517a189f2349338d360d628446ab87c7e04e20a6c1b00
MD5 1c58bf5a18668c70e4c934dbb7168ce6
BLAKE2b-256 29a0534fa3fd6a606d651dcd688924b64d579687b67c980312200c282eb2495a

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5fda14609dbe96352c7154cc02b985eaab7195ea16c854712bc73c11eb02eed7
MD5 e966ce4e91cfce57fb81256607f2ca58
BLAKE2b-256 7f82806f3ce7bee217bfd2cf557d4e734815a960191657bd805a3c21fc8ac7c7

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b79f2eea09b1e9822b22bd129a1433487173ac18f09ca9ddd8f03d6d932cce60
MD5 b610c2ac3c83004482620540f4e36c24
BLAKE2b-256 e1ee0981d81a4a7eac7f1af9f43996d7a8ba0249b766ece1b728cf5548d2e526

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ec2ab25406b849d337634bbceaa372e2d8ebb721705812225db2d18ee778a984
MD5 35ffa524e93c0b5f269e46e3110e182c
BLAKE2b-256 6c5e5c0c696c23a5473967125e6ae3bba5063caecca7c8c8075d5a02c283bd4c

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ec8a11aa5ee7d32c4ad026a74d6afe586bb35cc744977be5d4aa8c9228d91ecf
MD5 735e2f65fe13a14423afb508abb30f87
BLAKE2b-256 29f520feffb5b6b4885dde982dbc9d200bff038c2e8304efbe690bf3c2729605

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 aa0e87dca83fbe15965255f372fedb569fdde91c92a29fcd3a541e29a1c666fc
MD5 3d101403a1aef6f0f5802f0595a01787
BLAKE2b-256 fbf74876058dd6ae7e69bd32e54abd11c0dce5a4a4a900213f7781629848b73f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e04abe9f2014332fa7ce39be30e6ebad1dc4247e8ab1cdf17d01c2623f42879e
MD5 40d28fc36e68a6cb16db90258e7a76db
BLAKE2b-256 1312674caea03ec091b763c06341ca6fab8e4d397231e9fdd4f496b764e79d16

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4ae7bb6674ab5b1335415df572eb77dfd6991053f92059bbd34add2ec8fcb3ad
MD5 a0818f8a09d633e0cddc3ae640002879
BLAKE2b-256 b2d1fd3ca7cfc0aa93d0e8949c478c23e835f1fd779c4390c7f6f1b989b1ddff

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240916-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240916-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 397acf69fa743dbf5e4473c8fea7425da04ad14329997ce22510651f28ff1a52
MD5 79b6c0fe88111ddd4bbb14c4a0d443ea
BLAKE2b-256 e32c0382329589da45364a3ce0d70bd38a330570697c05a8e8663dc685890d71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page