Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20240921-cp312-cp312-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240921-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240921-cp311-cp311-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240921-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240921-cp310-cp310-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240921-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240921-cp39-cp39-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240921-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240921-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240921-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 cbdfb190429840c9f277d4b8322f18955d6433970e9c5889b35405d20789b060
MD5 4ea51c28cf8f1cc9cc9056065448a287
BLAKE2b-256 cb9959e8ed22a2b35a83958fc5574a73624240a667ca32db94e69078d42abc66

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240921-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240921-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b71377f755c005e2fc3f6c6d8ca80c8ffe8b64eaad937641696e9e5b3a9f2f14
MD5 db00a4c8c7d71d67670c4e52c467ff21
BLAKE2b-256 2dbe53ff59393a42d5c6e4867c5178ceae0ad433d08bee9c4b0812922b0f713d

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240921-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240921-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3c8a4b9a5a6341b85a6c92f502587546b156004b1a7cbe78ebb31fabf8a05a6e
MD5 1531e414c4cedebe9e487de3b602b35f
BLAKE2b-256 c8d74bd9bba69c7d6345ed74c846197464ffb8a7051b01ae7d79eedd5a57e85e

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240921-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240921-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7d8f4bcaa96bdaa67564448f82aec017ca5f14dd335107be51231c3e2b70b3c7
MD5 3eb4c6ee4692872b7f92bd2ee63d0c5b
BLAKE2b-256 66e5c1e062d96e6d1dfcc4d4e09992bf1f32b2077592623f5f1524399c7dbf96

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240921-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240921-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 fc02e3c839e2b79d37a4b1e201025b08b84236f84b4da618a1e647390cd9976e
MD5 346478b9ff3a3b297d6a66fb741518d1
BLAKE2b-256 5e799f7e7df1fd1eeaa6fafe5fdd454e5222b068f565b52ed2a0dfe7b1248e80

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240921-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240921-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 13ee917033f32be658a18f5bf600d6bd6fcc13c9be2f0551e715730303880546
MD5 f19a6f8546ebab1b20ea3226457c5162
BLAKE2b-256 c5d4d3eedfef5f6c49b7d30258f2326551c23605bab75c70e67e9f33530ed703

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240921-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240921-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 da682b3ef28e81fcfa3f2046cd39d2f75f6cfc366acb82cbbe6e45dafb9291d6
MD5 602454703eb9c7825d0f6af91467a4d5
BLAKE2b-256 5f935a43a343e6b87474b4598dc9c57ef00d0be2866c09622f19c949948c2d59

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240921-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240921-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 010d2cc17c0fa0d1a55a33ef03f0a28128aaac98969e2d2d992c068f8acc8960
MD5 2ee906e3a4f00d70161f87d9e8326df4
BLAKE2b-256 670f4f4ae50719d1c549b1eddd93ffce851d0f7944e6bd3e92f26e385d0ff141

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page