Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20240926-cp312-cp312-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240926-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240926-cp311-cp311-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240926-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240926-cp310-cp310-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240926-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20240926-cp39-cp39-manylinux_2_17_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20240926-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240926-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240926-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 6637e4b61568ac88cafb31ac751c0e3db1b8bc894ec3721379692ecf8029ecbe
MD5 487971f2edbd2f6f415ee8713752f712
BLAKE2b-256 07c765de19d85acdea99cad88986ac5ee1e0a6e6b218e7cddfc9ad0352018230

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240926-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240926-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6724380ad1334ec7e6c468ea8b26e2b00f0c4a5eeb8f5fde1a4b46e92e3e1f7d
MD5 c8cc9e2a2a79a8ee542295b718a19992
BLAKE2b-256 44029436c1a18b5f11b215efaa7639f9d9b05f0b1c892919b312e82472fe987b

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240926-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240926-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 4359cb4a62c37327564111faefb27532d1d67f10fd19f9f5cc6dfc6a9e13e1d5
MD5 936d2412b6d1d984f055e38e73ade289
BLAKE2b-256 646a89a2579a5142067c3389c067c1517655681f78ff6e3027109e2184343eaa

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240926-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240926-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1dbeb121644cddb24e1989654819d10dcf916530676498e84a0159a08067d270
MD5 81a7d9d5eb9f3a79976d288e90ca2457
BLAKE2b-256 3d0fd0b3b8a9dbf28ecf49432c7bb1f8eac8e1784296296003b6f5bef05809c0

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240926-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240926-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 579bafdd737fa3663e40deb7d60b33c5c67b7f5dd76edc8ee00cfd2bf8ae32d6
MD5 930dd87767c800c21d95ad1dd39e8707
BLAKE2b-256 a729c9a705ee727083f164f36559a86555a25a9be1ffa2393c364580b2b0b396

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240926-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240926-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 c19b3749726dfc81899cdf80e3858c952a26160a337362c5b1e5c1b0ba57ffaf
MD5 f5c93ae1a36d04c18dbca01c0b31dfb7
BLAKE2b-256 f6a54e489da4ec8301cdef322db3d0dc286def3c19152825b83c653fda939f35

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240926-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240926-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e05e70088aa12bc74c2c74731e1e530f0aff2009d12d057759e43855b68a4d70
MD5 1cb4473743dd388fb275cf4ceeab08bc
BLAKE2b-256 2b5f74440e27007e5f8d2ecb88ea6fd0fe7c6a8194671a336a9a4d29eecdbc35

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20240926-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20240926-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ba3be1385bd5efd879836b9033a49e18d54907f66285caff4da67728c234dc6d
MD5 102590032e1a0b16cb3cf7691b9ebaf7
BLAKE2b-256 b5006e6b75c1c96fe5166904aa917e9d8379165cdb5990d7960454756808eea1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page