Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241002-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241002-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241002-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241002-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241002-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241002-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241002-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241002-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241002-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241002-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d445c7c075d77cff241cde5dbf037b5e327325b854b4c37d91b3f8ce1ea2ccf7
MD5 f2a533887e8e39620c814ea6e9b508f7
BLAKE2b-256 1806d705d2a2bcd8167fcd9677da1c78f23cc9e2439a7c3c2be815f06a09d392

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241002-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241002-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1b95980b1cd23321300b653691ea5fbf91833bd730d07f0144644877895c9221
MD5 6fad8dbdc90b7d0fd50785ceb389f70b
BLAKE2b-256 ba33da50062c142cdb81a32dd6966b3a8e638db222e261a2731b2433ab346e55

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241002-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241002-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d79c880ad535acc18bc60baf8692e998982009423016fe52363b02d376194c50
MD5 5085acb2f2f99f55f95653ee015b01d9
BLAKE2b-256 722355f25d9da866253bca414e59d98e178c0fccf701f3b255d7cd2d7fe96a11

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241002-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241002-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 fd31c19f1869a8740efc751bb089a3eb23190f84e0a65b39bec93bb1aa817cff
MD5 48804200f9b5d9396f6507217fa26a7c
BLAKE2b-256 d60c7e970c5161cb4c202f59c84067c0dded17a9f3812ebaa59ec29a0f6a9f94

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241002-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241002-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 067b884c6e23231150cbac9bfde5bf58b27fb3b860f011992980af72fd2a31e9
MD5 a3084dea277b9b1a4ae4e8854c75e365
BLAKE2b-256 3fdf347ea096bca11afd46f11893bd0d112c84ba78775ecfeaab1b703fca8220

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241002-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241002-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 cd890c8d6a5d33719904deb158890bbc570782d3c4bd975776e723a0fa888ed7
MD5 c55900ef67d5b917f8511977914ec1c3
BLAKE2b-256 62a739785b52dee5a13b1de2b9f518ab3df57c361945981e9d966fc79f64f8b9

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241002-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241002-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 af2c8f5cea50170de6d1242399a9d2607341a7bd8838c91b127130d0e92cef8f
MD5 5df77132eb5d847a95be2e0be9cfa2ed
BLAKE2b-256 c7a18ff2d959333d08c5a90a765cb9dd8382f2c0a853c26e629a51dfa0df8e12

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241002-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241002-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e397488e6d7c6b548522e7273a87e553adf1c93f65c968a7c8556e11bc63be15
MD5 296a21dc1e0d7e6ceb5033a19d8b55e5
BLAKE2b-256 005d2dba43898bbe9dcf0870c20577fedf797fd5d553416daf5176fe6b977f71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page