Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241003-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241003-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241003-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241003-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241003-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241003-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241003-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241003-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241003-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241003-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 2fe30a36b25d012e0e405ed01120f48865b4bbd04f8de08c8178d5b7bb198fed
MD5 f8f2fe4369fccf46003cf3a32e45b75a
BLAKE2b-256 bb4483f0bc7fbf773f3db0d215920761107a74b366627ad8d154f39025ea5365

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241003-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241003-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 edb1120eaf7fdd30d4fed7532d70756cd2d0b832411f7f0f2d5c4f3a5efddcdb
MD5 87c370f58ab541e25b2233e41111d8d4
BLAKE2b-256 4e3b221c6d155ecc1c164cbd4196cd0d33d5b132f4dc866be7d103e29fc9ee74

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241003-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241003-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1caa9b6e0f72b50dd6f2dc1c2b7088aa078799d50bdf0729619bcf0fae763ca7
MD5 4dfae446297f15310e1720a2fc10814a
BLAKE2b-256 b043e8d85155ed38b04f0214cf33f6f82a9c58f888933a52b2faacf463680371

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241003-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241003-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 26b9a86dc75666d76eb5e34c21a22fc9026f3714d88b14958bf7cae03b488161
MD5 dd427900221f37df540b9c23a2529ff2
BLAKE2b-256 4746ac02757f4cdae83ea8f56d13c094f760e53263572f0ba3a336a3ce807e17

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241003-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241003-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 c8426b674e5cbd21bb2fd375d5a682637eaf91a0b39d30e9e7dff72a6e50bccb
MD5 c6412eebfe3375f1db35cb35a69e71eb
BLAKE2b-256 0159b56964dc022960a5b9a7f51319f0ce3329b134f0d7a8de8b4895b707d409

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241003-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241003-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 60af861d65f6e6a5cfe17dba8b4d1d50bc3180d50b89c459be2ddde303cc6758
MD5 f0bd93a5b0e895b5f61d428789109f23
BLAKE2b-256 114211d33af1252aa3cddf036ddcd428d690ea2151c34c139a4c3f8684138c5e

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241003-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241003-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d8aa2aade731fc88c024aca46133e5f21ae22316d4045d5f1730570d1e9aed9e
MD5 935cafabf7d2ebead51e0d133b06d06c
BLAKE2b-256 6de7d799a8254cfb4fb1d3b146b25a0b2a593ae28e4657cb5c7f8c231f7c3913

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241003-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241003-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4bf3f2f9ccf8cf26c1959bd785c9bd8d65518ba6d845835cc8f2ee93d9e19655
MD5 3ffd60330ae78d81f809506766b25a26
BLAKE2b-256 fac504c8a264158cc7d01bc3a9b12628500d9bb28c8935697e3e8de365c66cef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page