Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241005-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241005-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241005-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241005-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241005-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241005-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241005-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241005-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241005-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241005-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 328f987d6ccd3022ca5ba0cf555b8c316e8e1831723cbf6636204b24538f78c3
MD5 78a7c21c78cf677b975a98ad59c210c5
BLAKE2b-256 d513289ec94b7550bc69fe0a0a5ffe69d4cd36ecb642f2c1a50c9cb00404dea9

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241005-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241005-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9bb6f4f8c760770f01a35352162043304b16c541b95c51cbacc675532caa2179
MD5 9a7216f8ee7d42ac26c872c98109aa81
BLAKE2b-256 8224ae91ee28418ad349fbea547261703df91c7e125506f94578f82fd6cd063d

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241005-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241005-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 01f606f93a183f026e46c970f2a98b19de77f3e8900164f7e02013c81cf31cae
MD5 04f46873c61c7b4834fa05ac55cf30b3
BLAKE2b-256 301fabbfd8fa2a3df88139d4c5a52f18862094606557234d6ffa058ba6c0e88e

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241005-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241005-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 eedd66a7e6af6623357fe2614bf43c6684f48d5a7b8485068507458e778b07fd
MD5 5a7d7733e76e0a4a623ac7748e59107f
BLAKE2b-256 90dfa7f586b247819353cae09042841af7a56e5b30f28e180369ae33560c036f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241005-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241005-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 0c1d5752d6f352dd944eadb8c66edfe764eebf0b764e52296ed3180366179a86
MD5 05d3e72913ddae768cb77518bb742853
BLAKE2b-256 61a6c869ac4d28e17bb320c55ab0b53893a7ddd7d86a86cfc2d70f64cd2c5968

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241005-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241005-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 25e1db931076e38f03a90979d7dbf6fdef627896f5ada4d48d96053765484c68
MD5 ee854d27956e66094c69cb2a2f0df0dd
BLAKE2b-256 d457a731f442db1488b8f970dc438105997d738c5e4b9e347c401d2f168188cb

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241005-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241005-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 649ee4a5499c406b25a53eef4e3cd92a60c240396d241327c4687ad99ededd37
MD5 fb3c28d4d4e2078221aa033af3ccaf3a
BLAKE2b-256 2265c4ca8943f9fa8bbbc0fba8b22f8ac367c1cbec6f88d4df7e39e59183f5af

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241005-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241005-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5c6ed79f55fb2221a0fbaa41b296763097eb53906da9ce92e70fee96eea015eb
MD5 866706ecf189dc8b98c955440393183b
BLAKE2b-256 ebb437aab1e3aa6b4f268782012834df4fa6b0ead34cc394388d3a489df4c738

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page