Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241010-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241010-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241010-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241010-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241010-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241010-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241010-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241010-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241010-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241010-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b9abd98b38468887ea0938affd1209940502f551daada255ac71b107a146cc14
MD5 d94dc6144717f3310bf481ca9d5ccda7
BLAKE2b-256 6152d56ca836920ec27265aab82c25e2cfe6c0081282b8e4167cf79ccfc053e0

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241010-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241010-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 75cd59c3f89c7bc3e02ac40d10e351f75e07f4113ff2575335071ce3b6af3422
MD5 6267111261173cdb8a4fec299b35b686
BLAKE2b-256 bee646005b2250b14a79c5bb5d1d1579a3c8b823ae58edf9b09e843a38a6795b

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241010-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241010-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 8988dcdf9a673e57893487cdc4f774363b5ee488a4f7181e528be37890c0de61
MD5 bb171dc7a4d8aa81563f3a13a717c600
BLAKE2b-256 4df233e54591683da7367f24c85096d88f3d3e3d796c5b049a891a96cf794947

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241010-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241010-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5cf60b664e5df876f52fc5b9f23e0cb92f577486f0203c836af6640922f218a2
MD5 f020c2cebf06f438bf80fd92de611821
BLAKE2b-256 1d681a89649366ab77f5fd7d3697400278bde7cc957c4b7c46be76409afaa2ee

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241010-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241010-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 382b29a426a52da1eb15b827d24d25500d13f43b804b5f252d9a08ea0bdbe7d6
MD5 ad2024e5d281f3c41782265d193a6dab
BLAKE2b-256 29d1f48de4e808293b00aa2f01718fb31a638d4dae1049624e1d265ed1b6d0a2

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241010-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241010-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 c76d8fde87c6bc0f7ffca6526d82490fcaf07202cbf9dae87555b48296050967
MD5 5ab039217ad0debb79d487e3519f91ae
BLAKE2b-256 14e0e1ac2587a111c0759d601f9bef9b96fbb826bb0424013ff51e5ffc6f5e70

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241010-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241010-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 7d4c2c2b2f11fff317527982532caba04b6f42fba63d479bd0b428d4f66acada
MD5 7f419e4e1b6122af54907544a2c46e04
BLAKE2b-256 4a2cec41d1e5437e7cca52d1ab6abc20534a8b047b7b21db471173f0dad7d6b4

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241010-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241010-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 cef941eb4893e5ed8e095d93d7fcb3b966b59971a2a0203cf9afcd5bdeec334a
MD5 133d64140cbd287609953ae1ca6bfaaa
BLAKE2b-256 23706046137efe5da8786b37775538b2606879df480017fe2e32d1716691872e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page