Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241021-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241021-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241021-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241021-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241021-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241021-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241021-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241021-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241021-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241021-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 f442fb19a4b7513af004c5b4f4289c8603943887a0ffc796166ba40fede8641d
MD5 5cdd3bd953845848a87c6b54eaf89a99
BLAKE2b-256 0a6e7904707d3f76b2f777650169a710d0d2cf6c7a2153d02282a82c79d327bd

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241021-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241021-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 58ccceb211219a5f2850d967e0a5bde8a446313f46c11538274acd796e104a47
MD5 44a52945b6b36f855f3a9cc4a86945d9
BLAKE2b-256 62ac444a356e865cce64dbc36cad9fe5bbec3fb0967c59601486b47d747c862d

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241021-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241021-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e4ce95eb77cb8d6e7e276bcaa7e02b09e0a870032519ca17eab33f25d2bdb899
MD5 f6bd7e43b34edc1ae1b74bc7a1d418e7
BLAKE2b-256 d0d8c511f37c8d83523b27a6e95ef630e9bf3fbea57e7d8fb2026baf083e56be

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241021-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241021-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9be8188caa29785446b8216fff20bf348e8f4d0e6a666230684f7cf160b098de
MD5 3d2af093944d39638ac01b889d628d77
BLAKE2b-256 3185c7522678b544ed78c00c5e6036918442978f731e9ad34f7a34eaec3ae236

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241021-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241021-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 31a844ac420f6e701135c1b8340fe37d016948c1bb1d7ae74caed4e42dd4df2d
MD5 94e39ebd460477fcf5acffb311471649
BLAKE2b-256 cc0bd402fc3267082093d7d718a46f48e3d9b25e31c16830b706d5796b2606aa

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241021-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241021-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a34756f2d4b0c98e345ce88959a769c15a3813497ca6f83d78ab4535d692c723
MD5 14d8a2c8be3441e87950452f3282ab8b
BLAKE2b-256 b0c75b2e7c52251d2720096e0de0dfb62ffc1822781446586f306f5eace65bd5

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241021-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241021-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e71616ffff2713914a39b6978a4581ca174f90a35919bd41ddd83be50d9572d2
MD5 e8e628d9c3bbad5ae9c92fd9aeae97ac
BLAKE2b-256 495d36ac1320efcd8936cc72057c646676d160046e4e79be6f8efe06c2c4a582

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241021-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241021-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 62ca4e4b8656f1c7cae9666ec57d0c5883ab64a0abb1346a28f4c21f9b4744f4
MD5 dcaec577312ab1f44e9342765dd8e69f
BLAKE2b-256 4480c86fd61e840d0ccdca7ea10353989fd0c701cdc410d833ffded46069ba0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page