Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241022-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241022-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241022-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241022-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241022-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241022-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241022-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241022-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241022-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241022-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 edc5ec1bd4115b7a298a77403c185a558a3a6cabf73700d76ce7361f30c9b944
MD5 4004d4c84c267f80f2141d20fc65a50e
BLAKE2b-256 62893f19c1fabee5b350385dd1100adb37ff7b7d246fb924a60cc5f181cc6aa9

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241022-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241022-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8ea7b5fcc936812acd8664107550f67dd18d588fbc7ebcc47e63916c40ff674b
MD5 0d947fe07d7449ed9870e79ab520c0e1
BLAKE2b-256 504aa7fbfdd6cbe977df0c65f575e4fe82b6e7415e098ff3964cb1a285b0ba41

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241022-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241022-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 27a0fb8b1b38014a3592d4687ec9550617878f29e7db934ca9758773f7434c10
MD5 6081f60eb70362c156e5c638f68fd10d
BLAKE2b-256 292e713cb3b3ea94abdd8aa3c5cf737bf599e64515df37ce43ba526a024ce1aa

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241022-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241022-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a6de055a37665497b7c628982b56bedbdacd201bd721e2bf5247f37979f1b1bf
MD5 473a74b585410c8ed3db9df4a509a7a3
BLAKE2b-256 94bd06742ceba9ecb657666b9bd09251caf689bc0d0db1175d08d8d44232104b

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241022-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241022-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 cfdbe098ae1db8268b0914c8d9aa3ac92c65a98b726d0e7dec581b410abb1c7d
MD5 ddb9f3ff7ef1a4b5115845ece0a710ac
BLAKE2b-256 40b267f762ff73e3df68a886a733e80305d32452f857314fe883a6cabd5c7a3f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241022-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241022-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 54727983630f78fe5d8b6f8bef3f26d0f2caff91dc29b05033ecec6d2a235d03
MD5 6759142357460225d2fd93aad5018433
BLAKE2b-256 7c96f3137cb711ad9ada7a91fa27e4f829082b6f3bb225f3b46b315fca5e2c89

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241022-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241022-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 52dca66ee54fc3f31ef1972b9974791252fe7ca58923f912cf3e87ce31babf41
MD5 0daa0c9cf7d0a7af5fe4b8e23202f435
BLAKE2b-256 eabb668eb1b34cfec940e437a2c8b9d42a9239703c8b4ba981c19ee40c83fae6

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241022-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241022-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4f27735f980e0e1be688bee0a59e8c181778627801f72e5c769a8b2e6e07f0fc
MD5 71f8c88d2040667a4b625a6eb8d3edd3
BLAKE2b-256 26e6650f695cd8cee78cc0f176a33f6ac6e76f94b76f276f416f0d0be6299400

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page