Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241023-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241023-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241023-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241023-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241023-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241023-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241023-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241023-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241023-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241023-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 340dec8cd2887203c4a1d14966b01c5059c214a384c39afb309c3ecbf6c7b681
MD5 0f94084cb442f380a4044ce04d9cc852
BLAKE2b-256 9479c5893fb0a957da878289770cf8e9a9fabaee1678eb139831b2797e363f5f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241023-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241023-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8bb335cf4e6ad1e9b9b66ede3f4d50f99c80e226ab60e403baecae62a0c0d71f
MD5 f2a03058a24003037e5c3f37858edcc8
BLAKE2b-256 673af1f1ee8a637cf18814e21880cbc88a7b9d8f913c2cdeb59136f4658bfe1f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241023-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241023-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 8a3a1cb121a52cb2923cd4d4f423465e9ff1202d783a05c041cacca6cebf1774
MD5 02f8330e75ddc54e04c023a7e64e11f0
BLAKE2b-256 2b0360e43fab2aed1229635c096ded772b99e588163da622c9d1708855e1ecb3

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241023-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241023-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5f081fc754def24f4d25acfcc6e7aa6c619c147c566a414d4af697179c6292ee
MD5 07024b453a424d200948db9e50a65547
BLAKE2b-256 c1299caf1b01e1a263026391eaaf24dbeff56be4fbd10babf7515c80ecb6965d

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241023-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241023-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d6ea9b6f12c52c7199dab367f74ad2f62ff075c1c4e3ede9889115ec7dd1f0be
MD5 7b6e613298342ce021fab1800ec97247
BLAKE2b-256 40490ce872e8190bdfbb56fff9e8675da86612213c7aa236c7848aec52d4ede9

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241023-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241023-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d4277521ff6fa94518100d7685f63754b198d1b828a8e8744c1bc9e1fa8be9ab
MD5 70f2fd55d7c5174cac22be4c7b6d60dd
BLAKE2b-256 8df5c1765492d3142c62b8fd9651fb7c1719e78a467d4b1cce8e789266fe3c35

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241023-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241023-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5e045b0348ce911359088bcf0b08b54d9ff2f80223e8598a6cb3a55148bf9bf3
MD5 e086a9f7d203d6a8c9a0669bcab4b7ef
BLAKE2b-256 af78195e58f143f209ea7384b25b4776349f28032f807debf57c0d63902c9f21

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241023-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241023-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8c574e2097f9664e35f8cba9c829aa7df925c6e4b4b7875cbb0daeeb6d1d630f
MD5 ccbf9c1331fdc5eb444bb117bdce0b29
BLAKE2b-256 d4243ed054fb1d4b3bd99401d5f73f561b8e374970ca9f68ad197d19594e5f1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page