Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241027-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241027-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241027-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241027-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241027-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241027-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241027-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241027-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241027-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241027-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 7638bfb047abc2eec47e5f489b9123c1f4a46bc1f829cd02125a1b9600298994
MD5 5ffd2c24a6be701f7d086249a2142a4d
BLAKE2b-256 703e90227c8267ad583cc164e0d7476745f8cdbcd9cdacf777892aecc536fd52

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241027-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241027-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f307f365071f4481faf23424036a4d8880709d47d86b8d38201ac6a537a81764
MD5 62d4bf0e2ec6d37062ff8e3446d392fc
BLAKE2b-256 5d8d59a09490af112484062e20fa4b3367297258e089e9061996b1c97d54b639

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241027-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241027-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3cc9718649299df4814620cb6f72bcbc5ffb99ffa391cdbe25933478fda7fe2d
MD5 a3dd21d7ac21d5f7d12d650c8827d710
BLAKE2b-256 23661d4d0ba6313650626fc0d7454fbe6a3730184abe6d19ab0c921cdb8adfa2

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241027-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241027-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 92a5f8587b261d667b0e62e7f0555631a4727175c75deae800074e021339a300
MD5 c3b08aa8ea5e88bd04d27c3e7f153268
BLAKE2b-256 64bbf3e410966601d580e698fbdbd6b1ba437a1521be34018d754f53594076db

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241027-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241027-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 fdaa9589609eb93566c2671f17f346e28df4504ef06ca165d79b0e1823bd076c
MD5 abc5769c998299037a0fff250aefc4a4
BLAKE2b-256 ba61d3bd41110752e36ab91e796109fcd3d376f1abfe55406952854e82aebf39

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241027-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241027-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 421d34e82704bbce7da64b318e410e264a50e96151998016423eb82164181023
MD5 f21858231969a4852a768edd5be5a9d8
BLAKE2b-256 419ca92a9d93885f1bbdf459d0acdb12f1a29ab6cfa9fbf766c862eb7e57d09a

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241027-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241027-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 a3598b57bfb97dfa4a9ffcc9b7ab93fc596fdf0b3b5b948fae3ee68db8850c53
MD5 74c624154ba1632fbbb47436e71f22ec
BLAKE2b-256 576f2670f68c9e83baac76afc35073b8bdbd146976058cf090f5e370aa612727

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241027-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241027-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e841da291b8ee544569af9293a8b87617192f1b95b815ce791ea14fe8b97657c
MD5 39eea010fd55f3344238282f11348e55
BLAKE2b-256 37d427fa06af46f0e41d5e77677443f3d0eaabcd663e2c67bc4d7bb7ca520167

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page