Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241105-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241105-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241105-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241105-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241105-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241105-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241105-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241105-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241105-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241105-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 18d22d08022f600e2033db263098b5fbccd3e3159f55e70d8688e42a4691f558
MD5 cc124944f3a1dc5807b0f5384459350a
BLAKE2b-256 285feb3bd93cfe24a8c12681f9cfa913ae95a845b4bcd7e2905945173859b275

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241105-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241105-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e8ed3c66fb964d5fe37864b849d77ddf15862b33a8ff9fe23c15aefa8526fa67
MD5 a1c4b4af7dd36f7965bc17dfb1b65d5a
BLAKE2b-256 5d3784c88dce25c584a88c64af1eebc745d047df6835c5b315890b8d77cd8da6

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241105-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241105-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 190c58939d836230c5d506873a245fe689d85593167d259695901398c822896d
MD5 731dc557667e85abe00fbab87f841615
BLAKE2b-256 af4773d3fb6d81ec9f36934b9b06d332cc164694f51e79febb8cb2d1398c0b0e

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241105-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241105-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4e96561daa7a1ad7a964168faa108b3858bfdb17bc519e455a9efc9b2b07ac37
MD5 807f4c932bc0c324f8ba4b33c631a5c1
BLAKE2b-256 6691e8b70443e87527ee5838d88ad9b343a341f34ecbb0b16bfb2dd42e239f92

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241105-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241105-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 25bf8f6c91db187b8237f7967808d01fb630334c1ec1adbd0ca5e6c36a28d418
MD5 2a491c09d4beb3801e6513faaeccf746
BLAKE2b-256 804b0685671e1f7a82cb4e44600a8ac7373580cd9cec20d863b114c0fb91a560

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241105-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241105-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 192d377a1f8fa7ed885d563e41d56cb48aed56ae7bbd6526154efff466a75180
MD5 debc71f04c5cd7449da7828300ec8b04
BLAKE2b-256 9d5c65b45e9bf438db36de5d03fec58e9e04db22f1e0fc0178e65a21e13e6190

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241105-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241105-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 0a21e5bfad3e5881f3d34bd62f6fe39d57bf574c1bfcafc02ac25208c0b376dd
MD5 0d1c848692641cd1f4dda7178fb0e4da
BLAKE2b-256 a37a30864353276efb80943b5f750b51150bffb96ed9ca16fa0c62c46518c380

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241105-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241105-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4a55cfd042297de8c662dcea1273f3b1dffc3f15798644fc9c16d8e5cde99ba0
MD5 22ee239fad72d524881dbad0413fa0e2
BLAKE2b-256 0684de3cbc0cd42526debf414db01c0f5171db7ceedc633c50e2aab867079c88

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page