Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241106-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241106-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241106-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241106-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241106-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241106-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241106-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241106-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241106-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241106-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 57e99953b42a5f6279271ff40434acb8580dd51b67e3a8e23dee39d6262ca7ed
MD5 ef374895d17a491d8e9ce5e6f0053ae0
BLAKE2b-256 2b2adbec43c0c68b241c15bf2b5cb08e6eb465de4f2b08aeea8c00c6ef9fd096

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241106-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241106-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 000d62527d4cf7053db99158b18f27597c2089847c2f2b8e441e30fd287a2265
MD5 c7d6d755bdf9d2855bac47ffbf7bd429
BLAKE2b-256 dc5d7cf2e4fa3cacd49ade201d826c2059e9fc68fbdfb3bcb87895dbd7ff089b

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241106-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241106-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 88f4300f2c79d4ada84e269306fdeb1906f67a5da28b563754f7fe7157e81932
MD5 aa4fe5d7ab905ccc93794b47076beea5
BLAKE2b-256 b382715f93d5581c6c6a0dc9e155fcb1e0e9fea859c18dfe478580fecf868618

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241106-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241106-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 822dade01795a85d39e55f04a5ddeba3559fe08d56e5ce5729038fd0edc25f2a
MD5 a024d1b730024a059cd1640348bcb254
BLAKE2b-256 c1e70c7482a9a6afefa02e35e58516fb047f9c503b1e435db470e3ef9e20c6b5

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241106-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241106-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 6198f507d6add406f4cb96135e3778a85fcf02902d4ab929f174f1221dd8861a
MD5 faa99cc9a8bca714a36f2d31c00cbaab
BLAKE2b-256 f79f0844c0781f1fbe39efff50c33daa3a255849be4f62e1d166c347c32651f5

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241106-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241106-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1d419c88e1fb05e19f3bb12e1b5519c7edf8926cc2e832b9408e7b12f89f1f9c
MD5 bfd8002f3b21280eeea2d8a574bae6a5
BLAKE2b-256 e66ce8fb3ec24ead42fc352103627446019521d14514c9d5c91d6dd6a0ab5967

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241106-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241106-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 252fbfbd4acc9a0268161b489c0d7f7ebb37a184c4658582267d181dfc2a101d
MD5 271745e679f8f04a7c22fee19d75a6ae
BLAKE2b-256 b44797db7621352c2c5d8f9c1d9bd5656bc41125b3567d7458dd4e52b90d3bad

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241106-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241106-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 516587cc91ace2d93e0bae358e84a60438c8db1e4e3e33fe9d80dfc45e84b613
MD5 d521c8ac0c3e0e6d48841ae48c38e383
BLAKE2b-256 dbab746253302b66db76d81bb3536d6685410061044b1368fd762e04ea0f5080

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page