Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241111-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241111-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241111-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241111-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241111-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241111-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241111-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241111-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241111-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241111-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 40a3b891c6db26955b76e98877c017e1afb7e6ec581c79bd09dc4209c453d4b9
MD5 1e74a1a4c0e28029c19d8fd188528d9b
BLAKE2b-256 5682ed9ab133ef9cfe71e3c5c304c409e93b79d5234adcb3970f50f353d65f94

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241111-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241111-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ace5667dd3f46f6d0a2b61e4240076195987c8a9d1d94f57b8f1d9afe5b315e1
MD5 caddd30be72caef81b8804dd17ccb0ab
BLAKE2b-256 e19801fcd4ef872aefeb41394ded5959e785c851929cc502238407ce938515e0

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241111-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241111-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1f1b093643361309388fa058a566ad8d0bd9ab8639e593eda652a9744ea1db24
MD5 c7c4ce399e44a4c895ded43ef1b1a669
BLAKE2b-256 c7bf29f7dd3dc7a6cada7b0451409e2821ded6c5cc1c8db8e89f54ee2c0dca7f

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241111-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241111-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2192ec6fd058d2bbfc25505f15cbb3c16efc7b6aa3130a7ba4752fadf99d8770
MD5 21bbbaf4d5389abd007d18924e9b3923
BLAKE2b-256 7c98750d319ccec3ea95a1bd9a6a833cfa9f57660e8bf141a9ecd7fef7646101

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241111-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241111-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 89f6e60347427949abc5e061e50c72217b29ae96c417a50b2e2039fe4f8331c5
MD5 84a045d8120fb393e3c6d4bcfb1ff801
BLAKE2b-256 4c8215a53076fc1bb74f291f6ad588909680125b1ba451265c843840771f2a66

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241111-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241111-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b798051cc67178dcd5c65c2c48a747bd015d00ee032cbee873dd11fc5943b54a
MD5 ac6bf209dc4397ee2609eee100c89ccd
BLAKE2b-256 0c0f3b3c3d2fe63d0f3da9412e534b4057b3488840be8209d7165af97dbf9631

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241111-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241111-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 abd43cda60e4633ae6ea1eda9c37c31a21522db3243a87066d7e7b0f21b8a473
MD5 40e286ae47dce9f3931535353ddaba14
BLAKE2b-256 5e9194f021944e60e682f5b70791957d29aae25b9719c1eaa959379c9fd75def

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241111-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241111-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5dcb40aad31c1b2973dd0e27400da9fcf14dbfeb7c5f2da62deff851fd621592
MD5 e906a8fc593e7136b61daac7b0aabb12
BLAKE2b-256 52b32aa7eb32035a367144c48b953a9d95fa851ccd4202c153f0bbe5eb0e0f06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page