Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241114-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241114-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241114-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241114-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241114-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241114-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241114-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241114-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241114-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241114-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 c43f13ff7065d2aa205b6e7a3c3af8d19fa32b0f690a6accde0ac1f5ec3023d8
MD5 c6c693215b80cf150c76406bb3f89bb7
BLAKE2b-256 a556a46fb8b09f544713c4a50d978a1d20e8de9f5f9390bc5af6c9987ca87e14

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241114-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241114-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 96ba67035f0a3792397b94220dfa1de406bfbdb68cc18cee6d683bfd5725fb40
MD5 6e7a21bf806655869c118a70d1a52c14
BLAKE2b-256 66ee4ef63246318177e84d3071c0086add3ff1685e5b393fcb3011834bfe1087

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241114-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241114-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d9a47b59d956ebf9dd2f97534930ff52c0b077a8d1981485ab91f0d11294ad38
MD5 f0fc8c09bd67847ce977a220f4537557
BLAKE2b-256 4edf425542f6371dfa89e9648cc352b278e625a778c324ec1117d1d5bd17bcec

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241114-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241114-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 15db051dd5b064d4838c09528f0ac6ea1e686069ac689b9ee3b426508dda5033
MD5 6a588d182d7c6a15615bd459dcbe979c
BLAKE2b-256 8eeccdf2eeb38243c0c0bc9be0dda13d6dd9bb1a4ceee121df923d5b0b5fb8c1

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241114-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241114-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 09e2c19f56b634865784392583cfaf3c16a7861b045c4c32e42af57e2fc81b00
MD5 81787d1418b2e0306388c9388ce4b46c
BLAKE2b-256 1562018243ddc9991933def25949637019444b4705a7e828309f72b33c4e2933

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241114-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241114-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 60f01b1ad5de23699b7442636aa19a1f01acad32abb539eeef586a659e4599bd
MD5 8535a0e9d780e7c95c4775e128c6e7ed
BLAKE2b-256 977861511b8cc93dc7797642eeca97f3ae3a0d1493f7f4271a3c53b504a9f7dc

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241114-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241114-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 6af8257397367256f7495ff119537907aed92861b168edca332fbc180299e709
MD5 7a1f2e26463e51c42b8a4fc61c4cc044
BLAKE2b-256 45c7d0e1877c900f8d873fdcfe9697060958927f53efdd129bdc6aafc7894ea1

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241114-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241114-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a3aa003102fda36b2c48990a4ff9fb07db2137544db1829f4689e3ddde02eb6b
MD5 17d1239a3c73695cb5b84799f72c8d84
BLAKE2b-256 33b1c74550859aa22d29b3eaad1ff8c1679615a83fc0d8a2e68430bd2754b612

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page