Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241118-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241118-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241118-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241118-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241118-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241118-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241118-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241118-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241118-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241118-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 c8ba59a6538cbb1bc04288950436cfaa96b5b2866344348de41b85ee89317658
MD5 9f770d77e3e2659eb8dc7658b5e307e9
BLAKE2b-256 83ea6efabf30b3c79b13f6a89b7184ac23a7d9f5c7cc0c5ecb8e1814aa0d96d1

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241118-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241118-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4626a639a706f38e57c50ba7a7f312f00b92d1cbafd57058ded188a6e247d4cd
MD5 e9366295a0ef176e9ba45d78853b5747
BLAKE2b-256 5543c33cb6234646572586cefa68b85f2a7bfd9bfe27d8c73e55dc975b0ec202

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241118-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241118-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 95b0f5dba90d689d001196d66086a8d34fd9050dca9f99fa6a2f7a4d8f446abf
MD5 0c37e9f03a92fb01f00f17fe95b07687
BLAKE2b-256 abead9b702f67eb85b498673db74998741d62e2d97fcba635eadb82f4e2e8444

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241118-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241118-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f8eb03cbcfae01fdd73d9ccaaf23adc7a52c6c27fbb64f33e9ee800c3fb80dde
MD5 e91391ada4e563fca3d13d12849bc150
BLAKE2b-256 c7be57e8f879a964b5582d17644c01cf94fc9027a65761e161628e8dd4b76de0

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241118-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241118-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b7f8713e58c01c935fc372180efc84cbe99328c5a60b426cde75555904f5c923
MD5 fbc56290f7d6b1f5a941a246910573f6
BLAKE2b-256 d9e84c38f90209fd761cb886a2d9f9f3c0d229cc8460ca555e0e7a3dbd4f6011

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241118-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241118-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 aa91856fdc166b1bdd4f2d1dafc4b25fdb39e37372b6f1e34f2031f83b46a264
MD5 9e59e6b9318a1ba4a26e29757f4a3533
BLAKE2b-256 1a9226a0fcfe4e25d3a214365caeac3ba571423cdecb1ba92c422a17ec918823

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241118-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241118-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d41df1f9792206914ec2824141b08915e15266bd7ad77dd189dbfd0bdf5b735c
MD5 1f35c90f49589e1833fdaf6f8dae7940
BLAKE2b-256 e9c8495d1342526f9272ee6a54cd15fd4878226f0d63d9904ac8763a4b56a1ec

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241118-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241118-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f35c4aecf07825716480b66b1642842caf75fc9863256f1fc0d97c053041f2e6
MD5 b371bd39fcc335c9a1fefffac4511b58
BLAKE2b-256 02c841a9a83a28170e9ba42422a3be0a6f600a3aeb9cfff321388482be30228d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page