Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241121-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241121-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241121-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241121-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241121-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241121-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241121-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241121-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241121-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241121-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5305ad9711df252a80fd269f7bef1acf8aeb989ac7bd88e44c3e6decd9e6dfbb
MD5 a8ead51da6d40873f5ebcd5eadcb6da2
BLAKE2b-256 19d4f43c0ec577b9ac21c84a5d563b2ea2befc28210277e272a2626c689c8db3

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241121-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241121-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b5b85926627fc72612d97d80fc2a5f504a3bc741d5905d084764b4232c020188
MD5 5709229756e0fc7d7b9466f1394d4e2d
BLAKE2b-256 ad198c37e855a6ecac77b78e21fe5710f5679f46e3ced4350508e76e4bfe7e3a

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241121-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241121-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 be20fda3aeeeec19d998d5eb97bcd8bf5837def316058c970ef5405b391c1933
MD5 ce38e439b48a9c18d498121e8d276d86
BLAKE2b-256 211a59e2bb73a94e73f6c1ebd2acb6936e501370f1d2ad2117f91aef999e47f5

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241121-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241121-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 59ca88d8f3089869eb8034d8952bd185b5bb18311418ac07c5542c3c2c2f8245
MD5 a2839ee82c5cdbed3232e03582a58a35
BLAKE2b-256 6ac20b5e93d8fdf31f9dc576f0b32b1a1a26027f14e2e060f12cf85c4a3515b3

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241121-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241121-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 28cffec629df1a240040d9e194a18b4f2094bc8bb1ace01fbcb4f0c180107c4f
MD5 b6853cbbb8307fcd283e2ba2d606e9de
BLAKE2b-256 3e829ce7eae2c15803f21b85931889f4b6ab40f5fe7d75e5c6459f713af4ff32

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241121-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241121-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0f848acec7937ea8d22da06c1456f99821789ae1e1be63a98f75c5d631802cfd
MD5 24edd09173432f33c66b616caa0bb65a
BLAKE2b-256 4c246a7c40efaa95d4b7192ce5547ae14c5fe884d82cb2cccb8a7936bf78d75b

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241121-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241121-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5484300c4d62d53116dec1adfbaf510a03dd502e7d4a013da4690b90bcded902
MD5 d11abf3396bd58fc604e206c63e8cc7a
BLAKE2b-256 89058586ff40555044ee09570934761ea81adda2af85b9a0f5d86b23aeb56d40

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241121-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241121-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 787810fef8f449fdcc68b093e5df210c006c7ddb55590c3ba8095dd7c9548775
MD5 62830c67254746ad190edf4e6a2e361b
BLAKE2b-256 9eccc8bc9c5f5193ecacfdbe188f5917747029c285302d1c88e38b423b37cb8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page