Skip to main content

LiteRT is for mobile and embedded devices.

Project description

LiteRT is the official solution for running machine learning models on mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size on Android, iOS, and other operating systems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ai_edge_litert_nightly-1.0.1.dev20241122-cp312-cp312-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241122-cp312-cp312-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241122-cp311-cp311-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241122-cp311-cp311-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241122-cp310-cp310-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241122-cp310-cp310-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ai_edge_litert_nightly-1.0.1.dev20241122-cp39-cp39-manylinux_2_17_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ai_edge_litert_nightly-1.0.1.dev20241122-cp39-cp39-macosx_12_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241122-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241122-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1ff0288231025366d3a4faa5259a8d9860f7aba7885f68d3cbe5e51d0deae500
MD5 75a2bd7d27d569c769ad13feda5cda5b
BLAKE2b-256 74ade34722eadf9e6f579f98a88e65e19f8784630198de95afe54d55e0626951

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241122-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241122-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1c9ee15f475102972833a28130bcf413727b62ab9502020b8eff636a22375df9
MD5 7da08f0b96370237c1848deee30582aa
BLAKE2b-256 ee6dfe0bc1605b57a3cb6d4115e726da6309bab75a514fa3b23cf5bcd1b181f7

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241122-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241122-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d1924ad7b42792b122d09d06d441e8f8e16fdd56a188f7def57ec12684bfe19d
MD5 a23c595e9e51197596db6d96cb7f86e4
BLAKE2b-256 99de34be13ff2cb042913cb46b8a9e7ea84a5513d8a3856bab01b0d9d5fbd722

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241122-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241122-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f4be6cc5a6c41d229a58d6e60302381aceec502e62cbea340c17de6b9f33e6ce
MD5 21cf1bdfc84fd3424e1386d8b056ac99
BLAKE2b-256 e5fda2b4d71987caceeb945fd98c716116d7ccb29aded6abff494b5b73044b7c

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241122-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241122-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 7e7a6f9693e26d8d2dadb38ddf6fd995bf758baa199ef1b5fe495352c498860a
MD5 b89ceceef1de5e52d4e2bba294a1404f
BLAKE2b-256 f591334c199e65be770c018b01aa1cb0d12a0b3d93aa70ad7d560eb61ec64cc1

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241122-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241122-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a39ac06d3a87f4310656be7c1e667ea518a3507dc8dfe9ab6818fa335799eae3
MD5 71d76173e0ab63d3e9d4849f02e21d11
BLAKE2b-256 9549cdc4393150118f151c8aee14ec7190cbfff16a0956ade5611c6f8639109c

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241122-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241122-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 037b51e51e9a70bc6d1149e40ad75a9d9368c6ad74c634a5379e3a0e40d5008f
MD5 3b4897fb2b8ee8cc429af13b43ad06df
BLAKE2b-256 bb7097d9a2ef941b97f583023ded1b870b63ed183be6f6cd2d54355b563114cf

See more details on using hashes here.

File details

Details for the file ai_edge_litert_nightly-1.0.1.dev20241122-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ai_edge_litert_nightly-1.0.1.dev20241122-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 474c997a2682136e82337d360f06e0d943d98c513ea1b9cd4ae645cf395d7944
MD5 ec9e8218c98c580357e7f83e9b389ca2
BLAKE2b-256 a5d15e9aee29956f4d757867dff0220c85aa8d02855ce4d21af4302971efa2c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page