Skip to main content

AiiDA plugin for the Python-based Simulations of Chemistry Framework (PySCF).

Project description

aiida-pyscf

PyPI version PyPI pyversions CI

An AiiDA plugin for the Python-based Simulations of Chemistry Framework (PySCF).

  1. Installation
  2. Requirements
  3. Setup
  4. Examples

Installation

The recommended method of installation is through pip:

pip install aiida-pyscf

Requirements

To use aiida-pyscf a configured AiiDA profile is required. Please refer to the documentation of aiida-core for detailed instructions.

Setup

To run a PySCF calculation through AiiDA using the aiida-pyscf plugin, the computer needs to be configured where PySCF should be run. Please refer to the documentation of aiida-core for detailed instructions.

Then the PySCF code needs to be configured. The following YAML configuration file can be taken as a starting point:

label: pyscf
description: PySCF
computer: localhost
filepath_executable: python
default_calc_job_plugin: pyscf.base
use_double_quotes: false
with_mpi: false
prepend_text: ''
append_text: ''

Write the contents to a file named pyscf.yml, making sure to update the value of computer to the label of the computer configured in the previous step. To configure the code, execute:

verdi code create core.code.installed --config pyscf.yml -n

This should now have created the code with the label pyscf that will be used in the following examples.

Examples

Mean-field calculation

The default calculation is to perform a mean-field calculation. At a very minimum, the structure and the mean-field method should be defined:

from ase.build import molecule
from aiida.engine import run
from aiida.orm import Dict, StructureData, load_code

builder = load_code('pyscf').get_builder()
builder.structure = StructureData(ase=molecule('H2O'))
builder.parameters = Dict({'mean_field': {'method': 'RHF'}})
results, node = run.get_node(builder)

This runs a Hartree-Fock calculation on the geometry of a water molecule.

The main results are stored in the parameters output, which by default contain the computed total_energy and forces, as well as some timing information:

print(results['parameters'].get_dict())
{
    'forces': [
        [-6.4898366104394e-16, 3.0329042995656e-15, 2.2269765466236],
        [1.122487932593e-14, 0.64803103141326, -1.1134882733107],
        [-1.0575895664886e-14, -0.64803103141331, -1.1134882733108]
    ],
    'forces_units': 'eV/Å',
    'total_energy': -2039.8853743664,
    'total_energy_units': 'eV'
    'timings': {
        'total': 1.3238215579768, 'mean_field': 0.47364449803717
    },
}

Customizing the structure

The geometry of the structure is fully defined through the structure input, which is provided by a StructureData node. Any other properties, e.g., the charge and what basis set to use, can be specified through the structure dictionary in the parameters input:

from ase.build import molecule
from aiida.engine import run
from aiida.orm import Dict, StructureData, load_code

builder = load_code('pyscf').get_builder()
builder.structure = StructureData(ase=molecule('H2O'))
builder.parameters = Dict({
    'mean_field': {'method': 'RHF'},
    'structure': {
        'basis ': 'sto-3g',
        'charge': 0,
    }
})
results, node = run.get_node(builder)

Any attribute of the pyscf.gto.Mole class which is used to define the structure can be set through the structure dictionary, with the exception of the atom and unit attributes, which are set automatically by the plugin based on the StructureData input.

Optimizing geometry

The geometry can be optimized by specifying the optimizer dictionary in the input parameters. The solver has to be specified, and currently the solvers geometric and berny are supported. The convergence_parameters accepts the parameters for the selected solver (see PySCF documentation for details):

from ase.build import molecule
from aiida.engine import run
from aiida.orm import Dict, StructureData, load_code

builder = load_code('pyscf').get_builder()
builder.structure = StructureData(ase=molecule('H2O'))
builder.parameters = Dict({
    'mean_field': {'method': 'RHF'},
    'optimizer': {
        'solver': 'geometric',
        'convergence_parameters': {
            'convergence_energy': 1e-6,  # Eh
            'convergence_grms': 3e-4,    # Eh/Bohr
            'convergence_gmax': 4.5e-4,  # Eh/Bohr
            'convergence_drms': 1.2e-3,  # Angstrom
            'convergence_dmax': 1.8e-3,  # Angstrom
        }
    }
})
results, node = run.get_node(builder)

The parameters output will contain the optimized structure coordinates:

print(results['parameters'].get_dict())
{
    ...
    'optimized_coordinates': [
        [3.6553814911922e-16, -4.4060505668964e-14, 0.2752230960058],
        [8.5698519337032e-15, 1.4325248445029, -0.926413468005],
        [-7.8373230766793e-15, -1.4325248445029, -0.92641346800501]
    ]
}

For convenience, the optimized structure is also returned in the form of a StructureData under the structure output label.

Writing Hamiltonian to FCIDUMP files

To instruct the calculation to dump a representation of the Hamiltonian to FCIDUMP files, add the fcidump dictionary to the parameters input:

from ase.build import molecule
from aiida.engine import run
from aiida.orm import Dict, StructureData, load_code

builder = load_code('pyscf').get_builder()
builder.structure = StructureData(ase=molecule('N2'))
builder.parameters = Dict({
    'mean_field': {'method': 'RHF'},
    'fcidump': {
        'active_spaces': [[5, 6, 8, 9]],
        'occupations': [[1, 1, 1, 1]]
    }
})
results, node = run.get_node(builder)

The active_spaces and occupations keys are requires and each take a list of list of integers. For each element in the list, a FCIDUMP file is generated for the corresponding active spaces and the occupations of the orbitals. The shape of the active_spaces and occupations array has to be identical.

The generated FCIDUMP files are attached as SinglefileData output nodes in the fcidump namespace, where the label is determined by the corresponding active space:

print(results['fcidump']['active_space_5_6_7_8'].get_content())
 &FCI NORB=   4,NELEC= 4,MS2=0,
  ORBSYM=1,1,1,1,
  ISYM=1,
 &END
  0.5832127121682998       1    1    1    1
  0.5359642500498074       1    1    2    2
 -2.942091015256668e-15    1    1    3    2
  0.5381290185905914       1    1    3    3
 -3.782672959584676e-15    1    1    4    1
  ...

Writing orbitals to CUBE files

To instruct the calculation to dump a representation of molecular orbitals to CUBE files, add the cubegen dictionary to the parameters input:

from ase.build import molecule
from aiida.engine import run
from aiida.orm import Dict, StructureData, load_code

builder = load_code('pyscf').get_builder()
builder.structure = StructureData(ase=molecule('N2'))
builder.parameters = Dict({
    'mean_field': {'method': 'RHF'},
    'cubegen': {
        'indices': [5, 6],
        'parameters': {
            'nx': 40,
            'ny': 40,
            'nz': 40,
        }
    }
})
results, node = run.get_node(builder)

The indices key has to be specified and takes a list of integers, indicating the indices of the molecular orbitals that should be written to file. Additional parameters can be provided in the parameters subdictionary (see the PySCF documentation for details).

The generated CUBE files are attached as SinglefileData output nodes in the cubegen namespace, where the label is determined by the corresponding molecular orbital index:

print(results['cubegen']['mo_5'].get_content())
Orbital value in real space (1/Bohr^3)
PySCF Version: 2.1.1  Date: Sun Apr  2 15:59:19 2023
    2   -3.000000   -3.000000   -4.067676
   40    0.153846    0.000000    0.000000
   40    0.000000    0.153846    0.000000
   40    0.000000    0.000000    0.208599
    7    0.000000    0.000000    0.000000    1.067676
    7    0.000000    0.000000    0.000000   -1.067676
 -1.10860E-04 -1.56874E-04 -2.16660E-04 -2.92099E-04 -3.84499E-04 -4.94299E-04
 -6.20809E-04 -7.62048E-04 -9.14724E-04 -1.07439E-03 -1.23579E-03 -1.39331E-03
  ...

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiida-pyscf-0.3.0.tar.gz (18.8 kB view hashes)

Uploaded Source

Built Distribution

aiida_pyscf-0.3.0-py3-none-any.whl (15.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page