High Availability (HA) DAG Utility
Project description
airflow-ha
High Availability (HA) DAG Utility
Overview
This library provides an operator called HighAvailabilityOperator
, which inherits from PythonSensor
and runs a user-provided python_callable
.
The return value can trigger the following actions:
Return | Result | Current DAGrun End State |
---|---|---|
(Result.PASS, Action.RETRIGGER) |
Retrigger the same DAG to run again | pass |
(Result.PASS, Action.STOP) |
Finish the DAG, until its next scheduled run | pass |
(Result.FAIL, Action.RETRIGGER) |
Retrigger the same DAG to run again | fail |
(Result.FAIL, Action.STOP) |
Finish the DAG, until its next scheduled run | fail |
(*, Action.RETRIGGER) |
Continue to run the Sensor | N/A |
(Result.PASS, Action.RETRIGGER) |
Retrigger the same dag to run again | pass |
(Result.PASS, Action.RETRIGGER) |
Retrigger the same dag to run again | pass |
(Result.PASS, Action.RETRIGGER) |
Retrigger the same dag to run again | pass |
Note: if the sensor times out, the behavior matches (Result.PASS, Action.RETRIGGER)
.
Example - Always On
Consider the following DAG:
with DAG(
dag_id="test-high-availability",
description="Test HA Operator",
schedule=timedelta(days=1),
start_date=datetime(2024, 1, 1),
catchup=False,
):
ha = HighAvailabilityOperator(
task_id="ha",
timeout=30,
poke_interval=5,
python_callable=lambda **kwargs: choice(
(
(Result.PASS, Action.CONTINUE),
(Result.PASS, Action.RETRIGGER),
(Result.PASS, Action.STOP),
(Result.FAIL, Action.CONTINUE),
(Result.FAIL, Action.RETRIGGER),
(Result.FAIL, Action.STOP),
)
),
)
pre = PythonOperator(task_id="pre", python_callable=lambda **kwargs: "test")
pre >> ha
retrigger_fail = PythonOperator(task_id="retrigger_fail", python_callable=lambda **kwargs: "test")
ha.retrigger_fail >> retrigger_fail
stop_fail = PythonOperator(task_id="stop_fail", python_callable=lambda **kwargs: "test")
ha.stop_fail >> stop_fail
retrigger_pass = PythonOperator(task_id="retrigger_pass", python_callable=lambda **kwargs: "test")
ha.retrigger_pass >> retrigger_pass
stop_pass = PythonOperator(task_id="stop_pass", python_callable=lambda **kwargs: "test")
ha.stop_pass >> stop_pass
This produces a DAG with the following topology:
This DAG exhibits cool behavior.
If the check returns CONTINUE
, the DAG will continue to run the sensor.
If the check returns RETRIGGER
or the interval elapses, the DAG will re-trigger itself and finish.
If the check returns STOP
, the DAG will finish and not retrigger itself.
If the check returns PASS
, the current DAG run will end in a successful state.
If the check returns FAIL
, the current DAG run will end in a failed state.
This allows the one to build "always-on" DAGs without having individual long blocking tasks.
This library is used to build airflow-supervisor, which uses supervisor as a process-monitor while checking and restarting jobs via airflow-ha
.
Example - Recursive
You can also use this library to build recursive DAGs - or "Cyclic DAGs", despite the oxymoronic name.
The following code makes a DAG that triggers itself with some decrementing counter, starting with value 3:
with DAG(
dag_id="test-ha-counter",
description="Test HA Countdown",
schedule=timedelta(days=1),
start_date=datetime(2024, 1, 1),
catchup=False,
):
def _get_count(**kwargs):
# The default is 3
return kwargs['dag_run'].conf.get('counter', 3) - 1
get_count = PythonOperator(task_id="get-count", python_callable=_get_count)
def _keep_counting(**kwargs):
count = kwargs["task_instance"].xcom_pull(key="return_value", task_ids="get-count")
return (Result.PASS, Action.RETRIGGER) if count > 0 else (Result.PASS, Action.STOP) if count == 0 else (Result.FAIL, Action.STOP)
keep_counting = HighAvailabilityOperator(
task_id="ha",
timeout=30,
poke_interval=5,
python_callable=_keep_counting,
pass_trigger_kwargs={"conf": '''{"counter": {{ ti.xcom_pull(key="return_value", task_ids="get-count") }}}'''},
)
get_count >> keep_counting
License
This software is licensed under the Apache 2.0 license. See the LICENSE file for details.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file airflow_ha-0.1.1.tar.gz
.
File metadata
- Download URL: airflow_ha-0.1.1.tar.gz
- Upload date:
- Size: 9.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 47f0d678a3ffbd81f5aa69349e5069006bbb171d498caae933939fe42b96f2c7 |
|
MD5 | 63e5a07c8665f3e85a2ea45a52eaf741 |
|
BLAKE2b-256 | 7fd7308953a0ffa4050823ca0896a75fcde92449defeeabf661764e60988f86c |
File details
Details for the file airflow_ha-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: airflow_ha-0.1.1-py3-none-any.whl
- Upload date:
- Size: 9.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b2370eeb4aeff4d10190e1f86870a76e548a0e6758caedc72f62b09114d6b5f4 |
|
MD5 | 46d345aafc1186a0b2dd774eb43c4c25 |
|
BLAKE2b-256 | f7434de4409497bb518bcb9c3928d1e47c1692eed4443965f551a4c8b64157d4 |