DuckDB (duckdb.org) provider for Apache Airflow
Project description
airflow-provider-duckdb
A DuckDB provider for Airflow. This provider exposes a hook/connection that returns a DuckDB connection.
This works for either local or MotherDuck connections.
Installation
pip install airflow-provider-duckdb
Connection
The connection type is duckdb
. It supports setting the following parameters:
Airflow field name | Airflow UI label | Description |
---|---|---|
host |
Path to local database file | Path to local file. Leave blank (with no password) for in-memory database. |
schema |
MotherDuck database name | Name of the MotherDuck database. Leave blank for default. |
password |
MotherDuck Service token | MotherDuck Service token. Leave blank for local database. |
These have been relabeled in the Airflow UI for clarity.
For example, if you want to connect to a local file:
Airflow field name | Airflow UI label | Value |
---|---|---|
host |
Path to local database file | /path/to/file.db |
schema |
MotherDuck database name | (leave blank) |
password |
MotherDuck Service token | (leave blank) |
If you want to connect to a MotherDuck database:
Airflow field name | Airflow UI label | Value |
---|---|---|
host |
Path to local database file | (leave blank) |
schema |
MotherDuck database name | <YOUR_DB_NAME> , or leave blank for default |
password |
MotherDuck Service token | <YOUR_SERVICE_TOKEN> |
Usage
import pandas as pd
import pendulum
from airflow.decorators import dag, task
from duckdb_provider.hooks.duckdb_hook import DuckDBHook
@dag(
schedule=None,
start_date=pendulum.datetime(2022, 1, 1, tz="UTC"),
catchup=False,
)
def duckdb_transform():
@task
def create_df() -> pd.DataFrame:
"""
Create a dataframe with some sample data
"""
df = pd.DataFrame(
{
"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9],
}
)
return df
@task
def simple_select(df: pd.DataFrame) -> pd.DataFrame:
"""
Use DuckDB to select a subset of the data
"""
hook = DuckDBHook.get_hook('duckdb_default')
conn = hook.get_conn()
# execute a simple query
res = conn.execute("SELECT a, b, c FROM df WHERE a >= 2").df()
return res
@task
def add_col(df: pd.DataFrame) -> pd.DataFrame:
"""
Use DuckDB to add a column to the data
"""
hook = DuckDBHook.get_hook('duckdb_default')
conn = hook.get_conn()
# add a column
conn.execute("CREATE TABLE tb AS SELECT *, a + b AS d FROM df")
# get the table
return conn.execute("SELECT * FROM tb").df()
@task
def aggregate(df: pd.DataFrame) -> pd.DataFrame:
"""
Use DuckDB to aggregate the data
"""
hook = DuckDBHook.get_hook('duckdb_default')
conn = hook.get_conn()
# aggregate
return conn.execute("SELECT SUM(a), COUNT(b) FROM df").df()
create_df_res = create_df()
simple_select_res = simple_select(create_df_res)
add_col_res = add_col(simple_select_res)
aggregate_res = aggregate(add_col_res)
duckdb_transform()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for airflow-provider-duckdb-0.2.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80b81586a32eea5a573c3055c00be73061db1e53ef0f403bdba72528df2c3dc8 |
|
MD5 | 36faf9f5b5e557dd2a02599fb39f301a |
|
BLAKE2b-256 | ec9da71b0389a00f947bc21d29239eb764795af45e8b5d2cf8a233d904bc2fc3 |
Close
Hashes for airflow_provider_duckdb-0.2.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 874590e069e143574251fc6e30c6d5cd737d6f375170f53f5ae74ee4fe7c4afd |
|
MD5 | 611aea4fe52439b243cbdf18a40b5eff |
|
BLAKE2b-256 | 5a1ad687f8e34299ce49512b290ac7aa69e37db3d4b5c64e94892f87cc27ac0b |