Skip to main content

leveraging aisara algorithm for effective hyperparameter tuning

Project description

aisaratuners is a hyperparameter tuning library that can be used with different machine learning and deep learning python packages. It leverages AiSara algorithm, Latin hypercube sampling, and the concept of search space reduction for fast reach of the optimum hyperparameters combination.

  • Currently available for Keras, scikit-learn and PyTorch will be added in the coming versions

Documentation

Video Description

Medium Article

AiSara Hyperparameter Tuning API

AiSara Artificial Intelligence

Change Log

1.4.9 (17/3/2021)

  • First Release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aisaratuners-1.4.9.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

aisaratuners-1.4.9-py3-none-any.whl (10.7 kB view details)

Uploaded Python 3

File details

Details for the file aisaratuners-1.4.9.tar.gz.

File metadata

  • Download URL: aisaratuners-1.4.9.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for aisaratuners-1.4.9.tar.gz
Algorithm Hash digest
SHA256 fa0d10235f88374094ca073dad796fbb2840957a454faca3bf5bfb2b3384aa06
MD5 d5fe7aa9f910177713670d362696f644
BLAKE2b-256 9f17ac3b7351621cbec2357e28c87ec120af2ddb555a6c0e421887698426073e

See more details on using hashes here.

File details

Details for the file aisaratuners-1.4.9-py3-none-any.whl.

File metadata

  • Download URL: aisaratuners-1.4.9-py3-none-any.whl
  • Upload date:
  • Size: 10.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for aisaratuners-1.4.9-py3-none-any.whl
Algorithm Hash digest
SHA256 20e48ae07d7f8823e76e36b97806653448ef4db0d498dc899dc70999fdb129e3
MD5 977de7bcd6cac5a1d42e51b1b73228a6
BLAKE2b-256 9f83b84183bf2c90ca20096aceaf842f1f7a5c2a51901c6220c6d3beb693b5bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page