Skip to main content

Science as data transformation

Project description

test codecov

aiuna scientific data for the classroom

WARNING: This project is still subject to major changes, e.g., in the next rewrite.

Bradypus variegatus - By Stefan Laube - (Dreizehenfaultier (Bradypus infuscatus), Gatunsee, Republik Panama), Public Domain

Installation

Examples

Creating data from ARFF file

from aiuna import *

d = file("iris.arff").data

print(d.Xd)
"""
['sepallength', 'sepalwidth', 'petallength', 'petalwidth']
"""
print(d.X[:5])
"""
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]]
"""
print(d.y[:5])
"""
['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa']
"""
#print(d.y_pd.value_counts())
#...

cessing a data field as a pandas DataFrame

#from aiuna import *

#d = dataset.data  # 'iris' is the default dataset
#df = d.X_pd
#print(df.head())
#...

#mycol = d.X_pd["petal length (cm)"]
#print(mycol[:5])
#...

Creating data from numpy arrays

from aiuna import *
import numpy as np

X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([0, 1, 1])
d = new(X=X, y=y)
print(d)
"""
{
    "uuid": "06NLDM4mLEMrHPOaJvEBqdo",
    "uuids": {
        "changed": "3Sc2JjUPMlnNtlq3qdx9Afy",
        "X": "13zbQMwRwU3WB8IjMGaXbtf",
        "Y": "1IkmDz3ATFmgzeYnzygvwDu"
    },
    "step": {
        "id": "06NLDM4mLEMrHPOT2pd5lzo",
        "desc": {
            "name": "New",
            "path": "aiuna.step.new",
            "config": {
                "hashes": {
                    "X": "586962852295d584ec08e7214393f8b2",
                    "Y": "f043eb8b1ab0a9618ad1dc53a00d759e"
                }
            }
        }
    },
    "changed": [
        "X",
        "Y"
    ],
    "X": [
        "[[1 2 3]",
        " [4 5 6]",
        " [7 8 9]]"
    ],
    "Y": [
        "[[0]",
        " [1]",
        " [1]]"
    ]
}
"""

Checking history

from aiuna import *

d = dataset.data  # 'iris' is the default dataset
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    }
}
"""
del d["X"]
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    }
}
"""
d["Z"] = 42
print(d.Z, type(d.Z))
"""
[[42]] <class 'numpy.ndarray'>
"""
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    },
    "05eIWbfCJS7vWJsXBXjoUAh": {
        "name": "Let",
        "path": "aiuna.step.let",
        "config": {
            "field": "Z",
            "value": 42
        }
    }
}
"""

Grants

Part of the effort spent in the present code was kindly supported by Fapesp under supervision of Prof. André C. P. L. F. de Carvalho at CEPID-CeMEAI (Grants 2013/07375-0 – 2019/01735-0).

History

The novel ideias presented here are a result of a years-long process of drafts, thinking, trial/error and rewrittings from scratch in several languages from Delphi, passing through Haskell, Java and Scala to Python - including frustration with well stablished libraries at the time. The fundamental concepts were lightly borrowed from basic category theory concepts like algebraic data structures that permeate many recent tendencies, e.g., in programming language design.

For more details, refer to https://github.com/davips/kururu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiuna-0.2101.5.tar.gz (77.3 kB view details)

Uploaded Source

Built Distribution

aiuna-0.2101.5-py3-none-any.whl (104.2 kB view details)

Uploaded Python 3

File details

Details for the file aiuna-0.2101.5.tar.gz.

File metadata

  • Download URL: aiuna-0.2101.5.tar.gz
  • Upload date:
  • Size: 77.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1

File hashes

Hashes for aiuna-0.2101.5.tar.gz
Algorithm Hash digest
SHA256 290b580838fa48186071b5a527cec5942139489db17def427b055cb0b05823e8
MD5 30090717b13a0b9ffc337dbefc8a0546
BLAKE2b-256 dcab1f9cf651c64fde1fd1097e0ca0628acd248937c004f71448970f8ca6163c

See more details on using hashes here.

File details

Details for the file aiuna-0.2101.5-py3-none-any.whl.

File metadata

  • Download URL: aiuna-0.2101.5-py3-none-any.whl
  • Upload date:
  • Size: 104.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1

File hashes

Hashes for aiuna-0.2101.5-py3-none-any.whl
Algorithm Hash digest
SHA256 1f2e22b122b1c09676de4374e99056813a22ac0b9ad958b8b19bf031a00a3a03
MD5 f55c7f86d32f02b14273ee9ba20de186
BLAKE2b-256 28fbbbbe95d2fa484f277dabc6bc9d65d34cdf3dbf521db80b1229957965e68f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page