Skip to main content

Science as data transformation

Project description

test codecov

aiuna scientific data for the classroom

WARNING: This project is still subject to major changes, e.g., in the next rewrite.

Bradypus variegatus - By Stefan Laube - (Dreizehenfaultier (Bradypus infuscatus), Gatunsee, Republik Panama), Public Domain

Installation

Examples

Creating data from ARFF file

from aiuna import *

d = file("iris.arff").data

print(d.Xd)
"""
['sepallength', 'sepalwidth', 'petallength', 'petalwidth']
"""
print(d.X[:5])
"""
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]]
"""
print(d.y[:5])
"""
['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa']
"""
from pandas import DataFrame
print(DataFrame(d.y).value_counts())
"""
Iris-setosa        50
Iris-versicolor    50
Iris-virginica     50
dtype: int64
"""

cessing a data field as a pandas DataFrame

#from aiuna import *

#d = dataset.data  # 'iris' is the default dataset
#df = d.X_pd
#print(df.head())
#...

#mycol = d.X_pd["petal length (cm)"]
#print(mycol[:5])
#...

Creating data from numpy arrays

from aiuna import *
import numpy as np

X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([0, 1, 1])
d = new(X=X, y=y)
print(d)
"""
{
    "uuid": "06NLDM4mLEMrHPOaJvEBqdo",
    "uuids": {
        "changed": "3Sc2JjUPMlnNtlq3qdx9Afy",
        "X": "13zbQMwRwU3WB8IjMGaXbtf",
        "Y": "1IkmDz3ATFmgzeYnzygvwDu"
    },
    "step": {
        "id": "06NLDM4mLEMrHPOT2pd5lzo",
        "desc": {
            "name": "New",
            "path": "aiuna.step.new",
            "config": {
                "hashes": {
                    "X": "586962852295d584ec08e7214393f8b2",
                    "Y": "f043eb8b1ab0a9618ad1dc53a00d759e"
                }
            }
        }
    },
    "changed": [
        "X",
        "Y"
    ],
    "X": [
        "[[1 2 3]",
        " [4 5 6]",
        " [7 8 9]]"
    ],
    "Y": [
        "[[0]",
        " [1]",
        " [1]]"
    ]
}
"""

Checking history

from aiuna import *

d = dataset.data  # 'iris' is the default dataset
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    }
}
"""
del d["X"]
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    }
}
"""
d["Z"] = 42
print(d.Z, type(d.Z))
"""
[[42]] <class 'numpy.ndarray'>
"""
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    },
    "05eIWbfCJS7vWJsXBXjoUAh": {
        "name": "Let",
        "path": "aiuna.step.let",
        "config": {
            "field": "Z",
            "value": 42
        }
    }
}
"""

Grants

Part of the effort spent in the present code was kindly supported by Fapesp under supervision of Prof. André C. P. L. F. de Carvalho at CEPID-CeMEAI (Grants 2013/07375-0 – 2019/01735-0).

History

The novel ideias presented here are a result of a years-long process of drafts, thinking, trial/error and rewrittings from scratch in several languages from Delphi, passing through Haskell, Java and Scala to Python - including frustration with well stablished libraries at the time. The fundamental concepts were lightly borrowed from basic category theory concepts like algebraic data structures that permeate many recent tendencies, e.g., in programming language design.

For more details, refer to https://github.com/davips/kururu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiuna-0.2101.7.tar.gz (77.3 kB view details)

Uploaded Source

Built Distribution

aiuna-0.2101.7-py3-none-any.whl (104.3 kB view details)

Uploaded Python 3

File details

Details for the file aiuna-0.2101.7.tar.gz.

File metadata

  • Download URL: aiuna-0.2101.7.tar.gz
  • Upload date:
  • Size: 77.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1

File hashes

Hashes for aiuna-0.2101.7.tar.gz
Algorithm Hash digest
SHA256 95266848c67c2e1f9bd32e3dec556f6a55e5092cbe701d7d1c99914ef805ee6d
MD5 6aed4fa3004deedfe2ae485a97fc3dfa
BLAKE2b-256 8af82e74b90e9c15e49c0ade68f20a8a3ddf347266bbfabf7f00cc2d921c2b4f

See more details on using hashes here.

File details

Details for the file aiuna-0.2101.7-py3-none-any.whl.

File metadata

  • Download URL: aiuna-0.2101.7-py3-none-any.whl
  • Upload date:
  • Size: 104.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1

File hashes

Hashes for aiuna-0.2101.7-py3-none-any.whl
Algorithm Hash digest
SHA256 a42b13bb9ee0f2d2acb33df1b0e1168a890437d8e159b6f15978663069ea674f
MD5 b814932cc50b0e8757c98369f0e94e3d
BLAKE2b-256 b25938a9b8020568180dd1207f8e1610a3065bd3f4ac70a3fc2292358bb46295

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page