Skip to main content

Science as data transformation

Project description

test codecov

aiuna scientific data for the classroom

WARNING: This project is still subject to major changes, e.g., in the next rewrite.

Bradypus variegatus - By Stefan Laube - (Dreizehenfaultier (Bradypus infuscatus), Gatunsee, Republik Panama), Public Domain

Installation

Examples

Creating data from ARFF file

from aiuna import *

d = file("iris.arff").data

print(d.Xd)
"""
['sepallength', 'sepalwidth', 'petallength', 'petalwidth']
"""
print(d.X[:5])
"""
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]]
"""
print(d.y[:5])
"""
['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa']
"""
from pandas import DataFrame
print(DataFrame(d.y).value_counts())
"""
Iris-setosa        50
Iris-versicolor    50
Iris-virginica     50
dtype: int64
"""

cessing a data field as a pandas DataFrame

#from aiuna import *

#d = dataset.data  # 'iris' is the default dataset
#df = d.X_pd
#print(df.head())
#...

#mycol = d.X_pd["petal length (cm)"]
#print(mycol[:5])
#...

Creating data from numpy arrays

from aiuna import *
import numpy as np

X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([0, 1, 1])
d = new(X=X, y=y)
print(d)
"""
{
    "uuid": "06NLDM4mLEMrHPOaJvEBqdo",
    "uuids": {
        "changed": "3Sc2JjUPMlnNtlq3qdx9Afy",
        "X": "13zbQMwRwU3WB8IjMGaXbtf",
        "Y": "1IkmDz3ATFmgzeYnzygvwDu"
    },
    "step": {
        "id": "06NLDM4mLEMrHPOT2pd5lzo",
        "desc": {
            "name": "New",
            "path": "aiuna.step.new",
            "config": {
                "hashes": {
                    "X": "586962852295d584ec08e7214393f8b2",
                    "Y": "f043eb8b1ab0a9618ad1dc53a00d759e"
                }
            }
        }
    },
    "changed": [
        "X",
        "Y"
    ],
    "X": [
        "[[1 2 3]",
        " [4 5 6]",
        " [7 8 9]]"
    ],
    "Y": [
        "[[0]",
        " [1]",
        " [1]]"
    ]
}
"""

Checking history

from aiuna import *

d = dataset.data  # 'iris' is the default dataset
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    }
}
"""
del d["X"]
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    }
}
"""
d["Z"] = 42
print(d.Z, type(d.Z))
"""
[[42]] <class 'numpy.ndarray'>
"""
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    },
    "05eIWbfCJS7vWJsXBXjoUAh": {
        "name": "Let",
        "path": "aiuna.step.let",
        "config": {
            "field": "Z",
            "value": 42
        }
    }
}
"""

Grants

Part of the effort spent in the present code was kindly supported by Fapesp under supervision of Prof. André C. P. L. F. de Carvalho at CEPID-CeMEAI (Grants 2013/07375-0 – 2019/01735-0).

History

The novel ideias presented here are a result of a years-long process of drafts, thinking, trial/error and rewrittings from scratch in several languages from Delphi, passing through Haskell, Java and Scala to Python - including frustration with well stablished libraries at the time. The fundamental concepts were lightly borrowed from basic category theory concepts like algebraic data structures that permeate many recent tendencies, e.g., in programming language design.

For more details, refer to https://github.com/davips/kururu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiuna-0.2103.13.tar.gz (77.4 kB view details)

Uploaded Source

Built Distribution

aiuna-0.2103.13-py3-none-any.whl (104.4 kB view details)

Uploaded Python 3

File details

Details for the file aiuna-0.2103.13.tar.gz.

File metadata

  • Download URL: aiuna-0.2103.13.tar.gz
  • Upload date:
  • Size: 77.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for aiuna-0.2103.13.tar.gz
Algorithm Hash digest
SHA256 574999c1863b1e07b97ce530f76c0c28298cc0b9f739a7e1268d2ceb44b7e1d3
MD5 d17ceaa8a856b7e05d1ceebc7ccf9124
BLAKE2b-256 189b0e0f80571bd01aa399d468f65864bbb051e1603c23013917605e8941ac9b

See more details on using hashes here.

File details

Details for the file aiuna-0.2103.13-py3-none-any.whl.

File metadata

  • Download URL: aiuna-0.2103.13-py3-none-any.whl
  • Upload date:
  • Size: 104.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.2

File hashes

Hashes for aiuna-0.2103.13-py3-none-any.whl
Algorithm Hash digest
SHA256 d89b30a2c2bda8f220bb10b1517799a59b8494e33e4a84f444dc49adc585ab0e
MD5 5721932b3cc09f9baca4c3c8d9e19b85
BLAKE2b-256 f9926ce7a65096f98d1a54c7eea371316517a6ab692070efaec4427b0090841c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page