AI Verify implementation of Partial Dependence Plot (PDP) that explains how each feature and its feature value contribute to the predictions.
Project description
Algorithm - Partial Dependence Plot
Description
- A Partial Dependence Plot (PDP) explains how each feature and its feature value contribute to the predictions.
License
- Licensed under Apache Software License 2.0
Developers:
- AI Verify
Installation
Each test algorithm can now be installed via pip and run individually.
pip install aiverify-partial-dependence-plot==2.0.0a1
Example Usage:
Run the following bash script to execute the plugin
#!/bin/bash
root_path="<PATH_TO_FOLDER>/aiverify/stock-plugins/user_defined_files"
python -m aiverify_partial_dependence_plot \
--data_path $root_path/data/sample_bc_credit_data.sav \
--model_path $root_path/model/sample_bc_credit_sklearn_linear.LogisticRegression.sav \
--ground_truth_path $root_path/data/sample_bc_credit_data.sav \
--ground_truth default \
--model_type REGRESSION \
--no-run_pipeline
If the algorithm runs successfully, the results of the test will be saved in an output
folder.
Develop plugin locally
Execute the below bash script in the project root
#!/bin/bash
# setup virtual environment
python3 -m venv .venv
source .venv/bin/activate
# execute plugin
cd aiverify/stock-plugins/aiverify.stock.partial-dependence-plot/algorithms/partial_dependence_plot/
# install aiverify-test-engine
pip install -e '.[dev]'
python -m aiverify_partial_dependence_plot --data_path <data_path> --model_path <model_path> --ground_truth_path <ground_truth_path> --ground_truth <str> --model_type CLASSIFICATION --run_pipeline
Build Plugin
cd aiverify/stock-plugins/aiverify.stock.partial-dependence-plot/algorithms/partial_dependence_plot/
hatch build
Tests
Pytest is used as the testing framework.
Run the following steps to execute the unit and integration tests inside the tests/
folder
cd aiverify/stock-plugins/aiverify.stock.partial-dependence-plot/algorithms/partial_dependence_plot/
pytest .
Run using Docker
In the aiverify root directory, run the below command to build the docker image
docker build -t aiverify-partial-dependence-plot:v2.0.0a1 -f stock-plugins/aiverify.stock.partial-dependence-plot/algorithms/partial_dependence_plot/Dockerfile .
Run the below bash script to run the algorithm
#!/bin/bash
docker run \
-v $(pwd)/stock-plugins/user_defined_files:/input \
-v $(pwd)/output:/app/aiverify/output \
aiverify-partial-dependence-plot:v2.0.0a1 \
--data_path /input/data/sample_bc_credit_data.sav \
--model_path /input/model/sample_bc_credit_sklearn_linear.LogisticRegression.sav \
--ground_truth_path /input/data/sample_bc_credit_data.sav \
--ground_truth default \
--model_type REGRESSION \
--no-run_pipeline
If the algorithm runs successfully, the results of the test will be saved in an output
folder in the working directory.
Tests
Pytest is used as the testing framework.
Run the following steps to execute the unit and integration tests inside the tests/
folder
docker run --entrypoint python3 aiverify-partial-dependence-plot:v2.0.0a1 -m pytest .
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file aiverify_partial_dependence_plot-2.0.0a1.tar.gz
.
File metadata
- Download URL: aiverify_partial_dependence_plot-2.0.0a1.tar.gz
- Upload date:
- Size: 24.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.27.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ac8d0e8cd8c36d92e8dc35eb935cc8533648b9703a026a235932aec05c76bde |
|
MD5 | 492668813f26b206d1fe5351b887432d |
|
BLAKE2b-256 | 835f22c6cbbf77c02a30b03df45e2ff158f4826628a376b94d08b49c781b302e |
File details
Details for the file aiverify_partial_dependence_plot-2.0.0a1-py3-none-any.whl
.
File metadata
- Download URL: aiverify_partial_dependence_plot-2.0.0a1-py3-none-any.whl
- Upload date:
- Size: 22.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.27.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 509e6d49da9e7ae4c0a7ee314ef49728352387ff36a6d2660fdd955695b2f212 |
|
MD5 | be98df407a5e08f2b8183ffc2e9ab90e |
|
BLAKE2b-256 | b5380d1d534bed804fd7ce761e32a9c76f6108a933f7e9259922e1464b25ca53 |