Skip to main content

AI Verify implementation of Partial Dependence Plot (PDP) that explains how each feature and its feature value contribute to the predictions.

Project description

Algorithm - Partial Dependence Plot

Description

  • A Partial Dependence Plot (PDP) explains how each feature and its feature value contribute to the predictions.

License

  • Licensed under Apache Software License 2.0

Developers:

  • AI Verify

Installation

Each test algorithm can now be installed via pip and run individually.

pip install aiverify-partial-dependence-plot==2.0.0a1

Example Usage:

Run the following bash script to execute the plugin

#!/bin/bash

root_path="<PATH_TO_FOLDER>/aiverify/stock-plugins/user_defined_files"
python -m aiverify_partial_dependence_plot \
  --data_path $root_path/data/sample_bc_credit_data.sav \
  --model_path $root_path/model/sample_bc_credit_sklearn_linear.LogisticRegression.sav \
  --ground_truth_path $root_path/data/sample_bc_credit_data.sav \
  --ground_truth default \
  --model_type REGRESSION \
  --no-run_pipeline

If the algorithm runs successfully, the results of the test will be saved in an output folder.

Develop plugin locally

Execute the below bash script in the project root

#!/bin/bash

# setup virtual environment
python3 -m venv .venv
source .venv/bin/activate

# execute plugin
cd aiverify/stock-plugins/aiverify.stock.partial-dependence-plot/algorithms/partial_dependence_plot/
# install aiverify-test-engine 
pip install -e '.[dev]'

python -m aiverify_partial_dependence_plot --data_path  <data_path> --model_path <model_path> --ground_truth_path <ground_truth_path> --ground_truth <str> --model_type CLASSIFICATION --run_pipeline

Build Plugin

cd aiverify/stock-plugins/aiverify.stock.partial-dependence-plot/algorithms/partial_dependence_plot/
hatch build

Tests

Pytest is used as the testing framework.

Run the following steps to execute the unit and integration tests inside the tests/ folder

cd aiverify/stock-plugins/aiverify.stock.partial-dependence-plot/algorithms/partial_dependence_plot/
pytest .

Run using Docker

In the aiverify root directory, run the below command to build the docker image

docker build -t aiverify-partial-dependence-plot:v2.0.0a1 -f stock-plugins/aiverify.stock.partial-dependence-plot/algorithms/partial_dependence_plot/Dockerfile .

Run the below bash script to run the algorithm

#!/bin/bash
docker run \
  -v $(pwd)/stock-plugins/user_defined_files:/input \
  -v $(pwd)/output:/app/aiverify/output \
  aiverify-partial-dependence-plot:v2.0.0a1 \
  --data_path /input/data/sample_bc_credit_data.sav \
  --model_path /input/model/sample_bc_credit_sklearn_linear.LogisticRegression.sav \
  --ground_truth_path /input/data/sample_bc_credit_data.sav \
  --ground_truth default \
  --model_type REGRESSION \
  --no-run_pipeline

If the algorithm runs successfully, the results of the test will be saved in an output folder in the working directory.

Tests

Pytest is used as the testing framework.

Run the following steps to execute the unit and integration tests inside the tests/ folder

docker run --entrypoint python3 aiverify-partial-dependence-plot:v2.0.0a1 -m pytest .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file aiverify_partial_dependence_plot-2.0.0a1.tar.gz.

File metadata

File hashes

Hashes for aiverify_partial_dependence_plot-2.0.0a1.tar.gz
Algorithm Hash digest
SHA256 7ac8d0e8cd8c36d92e8dc35eb935cc8533648b9703a026a235932aec05c76bde
MD5 492668813f26b206d1fe5351b887432d
BLAKE2b-256 835f22c6cbbf77c02a30b03df45e2ff158f4826628a376b94d08b49c781b302e

See more details on using hashes here.

File details

Details for the file aiverify_partial_dependence_plot-2.0.0a1-py3-none-any.whl.

File metadata

File hashes

Hashes for aiverify_partial_dependence_plot-2.0.0a1-py3-none-any.whl
Algorithm Hash digest
SHA256 509e6d49da9e7ae4c0a7ee314ef49728352387ff36a6d2660fdd955695b2f212
MD5 be98df407a5e08f2b8183ffc2e9ab90e
BLAKE2b-256 b5380d1d534bed804fd7ce761e32a9c76f6108a933f7e9259922e1464b25ca53

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page