A Self-Supervised Learning Library
Project description
AK_SSL: A Self-Supervised Learning Library
📒 Table of Contents
- 📒 Table of Contents
- 📍 Overview
- ✍️ Self Supervised Learning
- 🔎 Supported Methods
- 📦 Installation
- 💡 Tutorial
- 📊 Benchmarks
- 📜 References Used
- 💯 License
- 🤝 Collaborators
📍 Overview
Welcome to the Self-Supervised Learning Library! This repository hosts a collection of tools and implementations for self-supervised learning. Self-supervised learning is a powerful paradigm that leverages unlabeled data to pre-trained models, which can then be fine-tuned on specific tasks with smaller labeled datasets. This library aims to provide researchers and practitioners with a comprehensive set of tools to experiment, learn, and apply self-supervised learning techniques effectively. This project was our assignment during the summer apprenticeship and final project in the newly established Intelligent and Learning System (ILS) laboratory at the University of Isfahan.
✍️ Self Supervised Learning
Self-supervised learning is a subfield of machine learning where models are trained to predict certain aspects of the input data without relying on manual labeling. This approach has gained significant attention due to its ability to leverage large amounts of unlabeled data, which is often easier to obtain than fully annotated datasets. This library provides implementations of various self-supervised techniques, allowing you to experiment with and apply these methods in your own projects.
🔎 Supported Methods
Vision Models
- BarlowTwins
- BYOL
- DINO
- MoCo v2
- MoCo v3
- SimCLR v1
- SimCLR v2
- SimSiam
- SwAV
Multimodal Models
- CLIP
- ALBEF
- SLIP
- VSE
- SimVLM
- UNITER
📦 Installation
You can install AK_SSL and its dependencies from PyPI with:
pip install AK-SSL
We strongly recommend that you install AK_SSL in a dedicated virtualenv, to avoid conflicting with your system packages
💡 Tutorial
Using AK_SSL, you have the flexibility to leverage the most recent self-supervised learning techniques seamlessly, harnessing the complete capabilities of PyTorch. You can explore diverse backbones, models, and optimizer while benefiting from a user-friendly framework that has been purposefully crafted for ease of use.
Initializing the Trainer for Vision Models
You can easily import Trainer module from AK_SSL library and start utilizing it right away.
from AK_SSL.vision import Trainer
Now, let's initialize the self-supervised trainer with our chosen method, backbone, dataset, and other configurations.
trainer = Trainer(
method="barlowtwins", # training method as string (BarlowTwins, BYOL, DINO, MoCov2, MoCov3, SimCLR, SimSiam, SwAV)
backbone=backbone, # backbone architecture as torch.Module
feature_size=feature_size, # size of the extracted features as integer
image_size=32, # dataset image size as integer
save_dir="./save_for_report/", # directory to save training checkpoints and Tensorboard logs as string
checkpoint_interval=50, # interval (in epochs) for saving checkpoints as integer
reload_checkpoint=False, # reload a previously saved checkpoint as boolean
verbose=True, # enable verbose output for training progress as a boolean
**kwargs # other arguments
)
Note: The use of **kwargs can differ between methods, depending on the specific method, loss function, transformation, and other factors. If you are utilizing any of the objectives listed below, you must provide their arguments during the initialization of the Trainer class.
-
SimCLR Transformation
color_jitter_strength # a float to Set the strength of color use_blur # a boolean to specify whether to apply blur augmentation mean # a float to specify the mean values for each channel std # a float to specify the standard deviation values for each channel
-
BarlowTwins
- Method
projection_dim # an integer to specify dimensionality of the projection head hidden_dim # an integer to specify dimensionality of the hidden layers in the neural network moving_average_decay # a float to specify decay rate for moving averages during training
- Loss
lambda_param # a float to controlling the balance between the main loss and the orthogonality loss
- Method
-
DINO Method
- Method
projection_dim # an integer to specify dimensionality of the projection head hidden_dim # an integer to specify dimensionality of the hidden layers in the projection head neural network bottleneck_dim # an integer to specify dimensionality of the bottleneck layer in the student network temp_student # a float to specify temperature parameter for the student's logits temp_teacher # a float to specify temperature parameter for the teacher's logits norm_last_layer # a boolean to specify whether to normalize the last layer of the network momentum_teacher # a float to control momentum coefficient for updating the teacher network num_crops # an integer to determines the number of augmentations applied to each input image use_bn_in_head # a boolean to spcecify whether to use batch normalization in the projection head
- Loss
center_momentum # a float to control momentum coefficient for updating the center of cluster assignments
- Method
-
MoCo v2
- Method
projection_dim # an integer to specify dimensionality of the projection head K # an integer to specify number of negative samples per positive sample in the contrastive loss m # a float to control momentum coefficient for updating the moving-average encoder
- Loss
temperature # a float to control the temperature for the contrastive loss function
- Method
-
MoCo v3
- Method
projection_dim # an integer to specify dimensionality of the projection head hidden_dim # an integer to specify dimensionality of the hidden layers in the projection head neural network moving_average_decay # a float to specify decay rate for moving averages during training
- Loss
temperature # a float to control the temperature for the contrastive loss function
- Method
-
SimCLR
- Method
projection_dim # an integer to specify dimensionality of the projection head projection_num_layers # an integer to specify the number of layers in the projection head (1: SimCLR v1, 2: SimCLR v2) projection_batch_norm # a boolean to indicate whether to use batch normalization in the projection head
- Loss
temperature # a float to control the temperature for the contrastive loss function
- Method
-
SimSiam
- Method
projection_dim # an integer to specify dimensionality of the projection head
- Loss
eps # a float to control the stability of the loss function
- Method
-
SwAV
- Method
projection_dim # an integer to specify dimensionality of the projection head hidden_dim # an integer to specify dimensionality of the hidden layers in the projection head neural network epsilon # a float to control numerical stability in the algorithm sinkhorn_iterations # an integer to specify the number of iterations in the Sinkhorn-Knopp algorithm num_prototypes # an integer to specify the number of prototypes or clusters for contrastive learning queue_length # an integer to specify rhe length of the queue for maintaining negative samples use_the_queue # a boolean to indicate whether to use the queue for negative samples num_crops # an integer to determines the number of augmentations applied to each input image
- Loss
temperature # a float to control the temperature for the contrastive loss function
- Method
Initializing the Trainer for Multimodal Models
You can easily import Trainer module from AK_SSL library and start utilizing it right away.
from AK_SSL.multimodal import Trainer
Now, let's initialize the self-supervised trainer with our chosen method, backbone, dataset, and other configurations.
trainer = Trainer(
method="clip", # training method as string (CLIP, ALBEF, SLIP, SimVLM, UNITER, VSE)
image_encoder=img_encoder, # vision model to extract image features as nn.Module
text_encoder=txt_encoder, # text model to extract text features as nn.Module
mixed_precision_training=True, # whether to use mixed precision training or not as boolean
save_dir="./save_for_report/", # directory to save training checkpoints and Tensorboard logs as string
checkpoint_interval=50, # interval (in epochs) for saving checkpoints as integer
reload_checkpoint=False, # reload a previously saved checkpoint as boolean
verbose=True, # enable verbose output for training progress as a boolean
**kwargs # other arguments
)
Note: The use of **kwargs can differ between methods, depending on the specific method, loss function, transformation, and other factors. If you are utilizing any of the objectives listed below, you must provide their arguments during the initialization of the Trainer class.
-
CLIP
image_feature_dim # Dimension of the image features as integer text_feature_dim # Dimension of the text features as integer embed_dim # Dimension of the embeddings as integer init_tau # Initial value of tau as float init_b # Initial value of b as float
-
ALBEF
mlm_probability # Masked language modeling probability as float embed_dim # Dimension of the embeddings as integer vision_width # Vision encoder output width as integer temp # Temperature parameter as float queue_size # Queue size as integer momentum # Momentum parameter as float
-
SimVLM
transformer_encoder # Transformer encoder for vision and text embeddings as nn.Module transformer_decoder # Transformer decoder for embeddings as nn.Module vocab_size # Size of the vocabulary as integer feature_dim # Dimension of the features as integer max_seq_len # Maximum sequence length as integer max_trunc_txt_len # Maximum truncated text length as integer prefix_txt_len # Prefix text length as integer target_txt_len # Target text length as integer pad_idx # Padding index as integer image_resolution # Image resolution as integer patch_size # Patch size as integer num_channels # Number of channels as integer
-
SLIP
mlp_dim # Dimension of the MLP as integer vision_feature_dim # Dimension of the vision features as integer transformer_feature_dim # Dimension of the transformer features as integer embed_dim # Dimension of the embeddings as integer
-
UNITER
pooler # pooler as nn.Module encoder # transformer encoder as nn.Module num_answer # number of answer classes as integer hidden_size # hidden size as integer attention_probs_dropout_prob # dropout rate as float initializer_range # initializer range as float
-
VSE
margin # Margin for contrastive loss as float
Training the Self-Supervised Model for Vision Models
Then, we'll train the self-supervised model using the specified parameters.
trainer.train(
dataset=train_dataset, # training dataset as torch.utils.data.Dataset
batch_size=256, # the number of training examples used in each iteration as integer
start_epoch=1, # the starting epoch for training as integer (if 'reload_checkpoint' parameter was True, start epoch equals to the latest checkpoint epoch)
epochs=100, # the total number of training epochs as integer
optimizer="Adam", # the optimization algorithm used for training as string (Adam, SGD, or AdamW)
weight_decay=1e-6, # a regularization term to prevent overfitting by penalizing large weights as float
learning_rate=1e-3, # the learning rate for the optimizer as float
)
Training the Self-Supervised Model for Multimodal Models
Then, we'll train the self-supervised model using the specified parameters.
trainer.train(
dataset=train_dataset, # the training data set as torch.utils.data.Dataset
batch_size=256, # the number of training examples used in each iteration as integer
start_epoch=1, # the starting epoch for training as integer (if 'reload_checkpoint' parameter was True, start epoch equals to the latest checkpoint epoch)
epochs=100, # the total number of training epochs as integer
optimizer="Adam", # the optimization algorithm used for training as string (Adam, SGD, or AdamW)
weight_decay=1e-6, # a regularization term to prevent overfitting by penalizing large weights as float
learning_rate=1e-3, # the learning rate for the optimizer as float
)
Evaluating the Vision Self-Supervised Models
This evaluation assesses how well the pre-trained model performs on a dataset, specifically for tasks related to linear evaluation.
trainer.evaluate(
train_dataset=train_dataset, # to specify the training dataset as torch.utils.data.Dataset
test_dataset=test_dataset, # to specify the testing dataset as torch.utils.data.Dataset
eval_method="linear", # the evaluation method to use as string (linear or finetune)
top_k=1, # the number of top-k predictions to consider during evaluation as integer
epochs=100, # the number of evaluation epochs as integer
optimizer='Adam', # the optimization algorithm used during evaluation as string (Adam, SGD, or AdamW)
weight_decay=1e-6, # a regularization term applied during evaluation to prevent overfitting as float
learning_rate=1e-3, # the learning rate for the optimizer during evaluation as float
batch_size=256, # the batch size used for evaluation in integer
fine_tuning_data_proportion=1, # the proportion of training data to use during evaluation as float in range of (0.0, 1]
)
Get the Vision Self-Supervised Models backbone
In case you want to use the pre-trained network in your own downstream task, you need to define a downstream task model. This model should include the self-supervised model backbone as one of its components. Here's an example of how to define a simple downstream model class:
class DownstreamNet(nn.Module):
def __init__(self, backbone, **kwargs):
super().__init__()
self.backbone = backbone
# You can define your downstream task model here
def forward(self, x):
x = self.backbone(x)
# ...
downstream_model = DownstreamNet(trainer.get_backbone())
Loading Self-Supervised Model Checkpoint
To load a previous checkpoint into the network, you can do as below.
path = 'YOUR CHECKPOINT PATH'
trainer.load_checkpoint(path)
Saving Self-Supervised Model backbone
To save model backbone, you can do as below.
trainer.save_backbone()
That's it! You've successfully trained and evaluate a self-supervised model using the AK_SSL Python library. You can further customize and experiment with different self-supervised methods, backbones, and hyperparameters to suit your specific tasks.
You can find the description of Trainer class and its function using help
built in fuction in python.
📊 Benchmarks
We executed models and obtained results on the CIFAR10 dataset, with plans to expand our experimentation to other datasets. Please note that hyperparameters were not optimized for maximum accuracy.
Method | Backbone | Batch Size | Epoch | Optimizer | Learning Rate | Weight Decay | Linear Top1 | Fine-tune Top1 | Download Backbone | Download Full Checkpoint |
---|---|---|---|---|---|---|---|---|---|---|
BarlowTwins | Resnet18 | 256 | 800 | Adam | 1e-3 | 1e-6 | 70.92% | 79.50% | Link | Link |
BYOL | Resnet18 | 256 | 800 | Adam | 1e-3 | 1e-6 | 71.06% | 71.04% | ||
DINO | Resnet18 | 256 | 800 | Adam | 1e-3 | 1e-6 | 9.91% | 9.76% | ||
MoCo v2 | Resnet18 | 256 | 800 | Adam | 1e-3 | 1e-6 | 70.08% | 78.71% | Link | Link |
MoCo v3 | Resnet18 | 256 | 800 | Adam | 1e-3 | 1e-6 | 59.98% | 74.20% | Link | Link |
SimCLR v1 | Resnet18 | 256 | 800 | Adam | 1e-3 | 1e-6 | 73.09% | 72.75% | Link | Link |
SimCLR v2 | Resnet18 | 256 | 800 | Adam | 1e-3 | 1e-6 | 73.07% | 81.52% | ||
SimSiam | Resnet18 | 256 | 800 | Adam | 1e-3 | 1e-6 | 19.77% | 70.77% | Link | Link |
SwAv | Resnet18 | 256 | 800 | Adam | 1e-3 | 1e-6 | 33.36% | 74.14% |
📜 References Used
In the development of this project, we have drawn inspiration and utilized code, libraries, and resources from various sources. We would like to acknowledge and express our gratitude to the following references and their respective authors:
- Lightly Library
- PYSSL Library
- SimCLR Implementation
- All original codes of supported methods
These references have played a crucial role in enhancing the functionality and quality of our project. We extend our thanks to the authors and contributors of these resources for their valuable work.
💯 License
This project is licensed under the MIT License.
🤝 Collaborators
By:
Thanks to Dr. Peyman Adibi and Dr. Hossein Karshenas, for their invaluable guidance and support throughout this project.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ak_ssl-0.2.0.tar.gz
.
File metadata
- Download URL: ak_ssl-0.2.0.tar.gz
- Upload date:
- Size: 48.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 576706991d2fa438190ce303ffd9b68d78e9c09f1271ee50edf7ea21074ede8c |
|
MD5 | cd3c8f1dc37ddd34a9ea376fd2d5809c |
|
BLAKE2b-256 | 03149ed56e1651a41a4206aae3f0d87b75bda30a3fa78e51579fbdcde0224556 |
File details
Details for the file AK_SSL-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: AK_SSL-0.2.0-py3-none-any.whl
- Upload date:
- Size: 56.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e2a4c7fc2ca190320d48416006ce87bd89923ffc41275b832a3a08bff3489e47 |
|
MD5 | f2073b70bbc516ea6f7f06307901f67d |
|
BLAKE2b-256 | 67496b41ab158c90e40845c802f35bc45cfefef549930ad8efd1f0b21663670f |