osu! difficulty and pp calculation for all modes
Project description
akatsuki-pp-py
Difficulty and performance calculation for all osu! modes.
This is a python binding to the Rust library rosu-pp which was bootstrapped through PyO3. Since all the heavy lifting is done by Rust, rosu-pp-py comes with a very fast performance. Check out rosu-pp's README for more info.
Exposed types
The library exposes the following classes:
Calculator
: Contains various parameters to calculate strains or map, difficulty, or performance attributesBeatmap
: Contains a parsed beatmapBeatmapAttributes
: Contains various attributes about the map itselfDifficultyAttributes
: Contains various attributes about the difficulty based on the modePerformanceAttributes
: Contains various attributes about the performance and difficulty based on the modeStrains
: Contains strain values for each skill based on the mode
Additionally, the following error types are exposed:
ParseError
: Failed to parse a beatmapKwargsError
: Invalid kwargs were provided
How to use akatsuki-pp-py
- The first step is to create a new
Beatmap
instance by providing appropriate kwargs. Either of the kwargspath
,content
, orbytes
must be given. The kwargsar
,cs
,hp
, andod
are optional. With the settersset_ar
,set_cs
,set_hp
, andset_od
you can specify custom attributes.
map = Beatmap(path = "/path/to/file.osu", ar = 9.87)
map.set_od(1.23)
with open("/path/to/file.osu", "rb") as file:
map = Beatmap(bytes = file.read())
with open("/path/to/file.osu") as file:
map = Beatmap(content = file.read())
- Next, you need to create an instance of
Calculator
by providing the appropriate kwargs again. Any of the following kwargs are allowed:mode
,mods
,acc
,n_geki
,n_katu
,n300
,n100
,n50
,n_misses
,combo
,passed_objects
,clock_rate
, anddifficulty
. Each of these also have a setter method e.g.set_n_misses
.
calc = Calculator(mode = 2, acc = 98.76)
calc.set_mods(8 + 64) # HDDT
- The last step is to call any of the methods
map_attributes
,difficulty
,performance
, orstrains
on the calculator and provide them aBeatmap
.
Example
from akatsuki_pp_py import Beatmap, Calculator
map = Beatmap(path = "./maps/100.osu")
calc = Calculator(mods = 8)
# Calculate an SS on HD
max_perf = calc.performance(map)
# The mods are still set to HD
calc.set_acc(99.11)
calc.set_n_misses(1)
calc.set_combo(200)
# A good way to speed up the calculation is to provide
# the difficulty attributes of a previous calculation
# so that they don't need to be recalculated.
# **Note** that this should only be done if neither
# the map, mode, mods, nor passed objects amount changed.
calc.set_difficulty(max_perf.difficulty)
curr_perf = calc.performance(map)
print(f'PP: {curr_perf.pp}/{max_perf.pp} | Stars: {max_perf.difficulty.stars}')
map_attrs = calc.map_attributes(map)
print(f'BPM: {map_attrs.bpm}')
strains = calc.strains(map)
print(f'Maximum aim strain: {max(strains.aim)}')
Installing rosu-pp-py
Installing rosu-pp-py requires a supported version of Python and Rust.
Once Python and Rust and ready to go, you can install the project with pip:
$ pip install akatsuki-pp-py
or
$ pip install git+https://github.com/osuAkatsuki/akatsuki-pp-py
Learn More
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file akatsuki_pp_py-1.0.5.tar.gz
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5.tar.gz
- Upload date:
- Size: 18.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6368629844d9f1edea8cbc86c3310449150ba7af6e1a3c70cc7053cf29021394 |
|
MD5 | 209201e0aeec7a6413ea0d51dca5aec4 |
|
BLAKE2b-256 | ec35c8c3b7fb9a3543833f547a091c2620735df6b6099359ea55199311eafcd2 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp311-none-win_amd64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp311-none-win_amd64.whl
- Upload date:
- Size: 361.0 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9951ddc1b79a56f55592f8205c36c687e50c4b5a96fb71e0931d347fad99c23 |
|
MD5 | f6e95cabb8134a8bc8e61787f357a9fe |
|
BLAKE2b-256 | ebe81f2fe55ab438124f906bdd9fdfca59eab4e53e26c6b60d65fd32dae417a0 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp311-none-win32.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp311-none-win32.whl
- Upload date:
- Size: 342.5 kB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73ed5b0287f3b4c83e14e83a1238382677b5d185572e45e83474f60ab2d38af2 |
|
MD5 | 7b0e2a8917c9ce69b11e67385efdb34d |
|
BLAKE2b-256 | fdfd9817b089d1d40637715426309579ea97a58965f7c1ef224f56f6f0f2007f |
File details
Details for the file akatsuki_pp_py-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 467.2 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e348cb33cb5028512f8d6834c0ffbd113bb17978040664fa067f08f2774d44b7 |
|
MD5 | 3fdac881ae46b3e7a514d7134845d177 |
|
BLAKE2b-256 | 7bdb58a78baff6ea677131160a5d6794b5ab3b28bbec71e03302bea0188deed3 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 455.0 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1913382468a4ac18a76ab32462ce0a74c03d5e0a6719199f34dbff5cd4ef37be |
|
MD5 | 58d47161775e1081205644a9d0b3d6ab |
|
BLAKE2b-256 | a5895e676921ef8986928ecd1b01fb273e6dd881523f24f3d7fb2efc7a42e8bc |
File details
Details for the file akatsuki_pp_py-1.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
- Upload date:
- Size: 475.0 kB
- Tags: CPython 3.11, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8a5f9b943a6cc97ce041586fdcc87227920fb74ce8a0867076a0a635a2ba3277 |
|
MD5 | ca56e10b4f8a570570f2d67f1de32f1f |
|
BLAKE2b-256 | 4f63698087dfa8597c604ffc896284572d084a0c27b9ebb3ff6584a1f8de4782 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp311-cp311-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp311-cp311-macosx_10_12_x86_64.whl
- Upload date:
- Size: 437.2 kB
- Tags: CPython 3.11, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0272cf6789f3413a9db10b617e4628cf110184b8eec6506d2d60a99ee4b8de31 |
|
MD5 | b6ec437a8e75b57434683870b7121705 |
|
BLAKE2b-256 | cbdb4187b90591db5299c1d7585f8da9b797bc9eeaa1efb99efa97889f317bc0 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp311-cp311-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp311-cp311-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 846.8 kB
- Tags: CPython 3.11, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 747cd1ebd257a369d32e0db0169e1ee1af06f1e6d59db2d7b64dafa64b4cacc5 |
|
MD5 | cddb988d2e77d1a051931cd5c4556c19 |
|
BLAKE2b-256 | 9bda94389cd3d6a15ebdfd9eed6e9acb20eb771b522d3d01176477496d114a2d |
File details
Details for the file akatsuki_pp_py-1.0.5-cp310-none-win_amd64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp310-none-win_amd64.whl
- Upload date:
- Size: 361.0 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7503c0ef2ce8767051039c9ae89e00644fd4ff43eee06734c51ae5dbbbfe9998 |
|
MD5 | f080d72cb248abb3acace243690b1132 |
|
BLAKE2b-256 | 9dd687e5808ef1fdcf12c44912c516107d9f02f036b852ac64c41755c54be267 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp310-none-win32.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp310-none-win32.whl
- Upload date:
- Size: 342.5 kB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68172e9225a81c344c2ab2e5bd305ec57500d0df7b4ad18f549d881b782965a8 |
|
MD5 | 04a163debb64fecab3317f948697867a |
|
BLAKE2b-256 | ed2c838ef653f0cf358d26baa67b75ada17b705380b6325393fc995ce32a94a7 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 467.2 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7118aea0a3fc827e0c26b8d3e8436e16945d6f58e6f842e5264e1f06abe96a8 |
|
MD5 | 87323b2a2e422853b4b9df06e5a419d8 |
|
BLAKE2b-256 | 9549fef901df23fc290831f71da7b57f08db395a71be74fef8108200279cc0d9 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 455.0 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 89c10f32b638237d720d014fe9f7184a2f5316bcb7276044156483622cad684c |
|
MD5 | daf435c60c3bd9778029f3aa33472932 |
|
BLAKE2b-256 | 0ebebc50ca466acafb77ac563d23d6da99bf393093ef00756932d05c4cc96660 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
- Upload date:
- Size: 475.0 kB
- Tags: CPython 3.10, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 546ff2202c843e8497816d7dc5f3e98ddf3496ee11930eac535b2a1822048bd0 |
|
MD5 | 9da3a5f1b0f48c5da6b21799a174ca8e |
|
BLAKE2b-256 | c4c4a2ddbaa7627f44829d9a0873c025d5b10e99061accadc3c03a08d711e469 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp310-cp310-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp310-cp310-macosx_10_12_x86_64.whl
- Upload date:
- Size: 437.2 kB
- Tags: CPython 3.10, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1495ac93c753699348e30ec1fdeda68cf652103a07a87b445a405d2014064797 |
|
MD5 | 6ccbbdc18a59986b3d5c4d032d668622 |
|
BLAKE2b-256 | 9e33d04d8f1fa61a4ae11fcd6e1a6630785d3b53c59333889afc1e468b451eaa |
File details
Details for the file akatsuki_pp_py-1.0.5-cp310-cp310-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp310-cp310-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 846.8 kB
- Tags: CPython 3.10, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b518b0adf89960b37b52302fda3b8dc20fbf015630de0aa1bbc19d11299d129 |
|
MD5 | b132e3eb88771badbcb65d221a696214 |
|
BLAKE2b-256 | 024dabce330c8ac3d3f448567546aee7c6a5fc5afed9d595785bdd19a01644fd |
File details
Details for the file akatsuki_pp_py-1.0.5-cp39-none-win_amd64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp39-none-win_amd64.whl
- Upload date:
- Size: 361.1 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d16cd61dc763ef8f6d6e10427e71c3c923608474969914f376685a0701600af |
|
MD5 | 2aaca9113f82ba6181a3287db3035195 |
|
BLAKE2b-256 | e2e077011bac4da44df5fdf27caf453a71d62976135fba21c47c0eef835aa862 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp39-none-win32.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp39-none-win32.whl
- Upload date:
- Size: 342.4 kB
- Tags: CPython 3.9, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a33b2f5954823fab8316ac8b5da8e633b9c944346ba2c441353624c0c884619c |
|
MD5 | aecb1fc4b7d176d7e8ed4591f67be494 |
|
BLAKE2b-256 | a72bd58b9e9e81fcaf8bf566a22b10ab5309630b3f6e74d155f3beb777fdc8cb |
File details
Details for the file akatsuki_pp_py-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 467.2 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e6bc462806480cbc1883052f3933746eb1b8631a4acf3ecf3d1802d44165aaf |
|
MD5 | 64e200f99146db0c14770414d8143f21 |
|
BLAKE2b-256 | e9a836a5c85dc828663a57c91713ed75a09ee1b07f2f533deb8d7468ecc3d82f |
File details
Details for the file akatsuki_pp_py-1.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 455.2 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | faaa58b19353bff70563b4fc731f51bcd55f55df0b37ec702af669730b0368cb |
|
MD5 | 07eb210a52cd146377719196f6dd5864 |
|
BLAKE2b-256 | 14cff34dfc9c14bbed283bb94ea4ba07e80c67376b3060dd9aa2fa1ca2f0aed8 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
- Upload date:
- Size: 475.1 kB
- Tags: CPython 3.9, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 334a6e7cb19dd820c6536b971f17be2d23718001fc1675ebdf9a9d83474c0b22 |
|
MD5 | 034eb124264d119e9591cd318c9de5b9 |
|
BLAKE2b-256 | f3abe01e0dacabe42087b93c1b49e25fa2b15ab75110f80c99a0b091697879dc |
File details
Details for the file akatsuki_pp_py-1.0.5-cp39-cp39-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp39-cp39-macosx_10_12_x86_64.whl
- Upload date:
- Size: 437.2 kB
- Tags: CPython 3.9, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ccf1d16e19c6f1e8829b7bb86841621ba30881e0bd41b2dd6d8b698495f6f12 |
|
MD5 | 68e23be23c15ca1605bbce121e552a66 |
|
BLAKE2b-256 | e6abf5c5c748d64831751a5b513d580ab3447232cdc78b5dcf2e25adcb8e1568 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp39-cp39-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp39-cp39-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 846.8 kB
- Tags: CPython 3.9, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 28e45d694df23d99a770f535b52e8e40972ada2cc4379c6c43df67949504c888 |
|
MD5 | b0824a19044d153c57e384221229b73d |
|
BLAKE2b-256 | e02164cff3ec6dc8dbbf2a58116dd18037fbac58faa7187b90322b8fc307f6ec |
File details
Details for the file akatsuki_pp_py-1.0.5-cp38-none-win_amd64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp38-none-win_amd64.whl
- Upload date:
- Size: 361.3 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b74a727c18dd86cc665563a6146b960427c3d25b0b96b9767ad5a274bfef0c4a |
|
MD5 | 973696d950b53fdaf5a862df0f8e650a |
|
BLAKE2b-256 | 8db5b16a8e898d164e4e70ca3ae3bc7cae4d3f7eb0522642e461be6aa7f45663 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp38-none-win32.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp38-none-win32.whl
- Upload date:
- Size: 342.7 kB
- Tags: CPython 3.8, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a3bbee78b93d99a4fbaecf1a1cfca2f040193ecad1bddcf24b2e052285cf239 |
|
MD5 | a9ca5304e984ed4eac8505ef8f32161d |
|
BLAKE2b-256 | 43f326bee1bb2b9c3b229b4c07036c6be91f5bbbba1eaeae5c3d40c67e44e10c |
File details
Details for the file akatsuki_pp_py-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 467.6 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b2b14cd8df72811a9bf6c2173601584315131b4a7b54037ac753e0d0a4bd16b |
|
MD5 | 9b35ab06323b2c5aa444ce31243b70bb |
|
BLAKE2b-256 | 6073c57c01f2470b8ba473a9b22d72b5e5c56856f44ab648ddbc27da83fe2607 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 455.4 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b89782c87a9a623dcdcb4ad59319d12ee0c5308d1ecf9d087e7d50f969a21cc1 |
|
MD5 | 2323415f27b112221519cf6d3c4bd9d8 |
|
BLAKE2b-256 | 64a6b349c6262b13eec55c69ddb75b863e3ef53a38e015ee6785b2dd9990cfe9 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
- Upload date:
- Size: 475.4 kB
- Tags: CPython 3.8, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 92b211192a6e80f16e0ae46030d1aaa8ec64acee275d3f77ab537e3ceb3ef5ad |
|
MD5 | 21586271430d7b23f60c98b57643ab83 |
|
BLAKE2b-256 | 2ef9bb60dba5e24304d3463e667adf8e92831fb755705166350fa532bc03e480 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp38-cp38-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp38-cp38-macosx_10_12_x86_64.whl
- Upload date:
- Size: 437.6 kB
- Tags: CPython 3.8, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc59ca5c521c45959284a3d1b41d2ba62fe350ac1df0563d7c9bc989ed44217d |
|
MD5 | 6a31b95daa7217a27522ae3f0e7d04bf |
|
BLAKE2b-256 | 11cfebe2ffc1ea8029d6bf359880e6f53ab1b09498330b75e2355edf6a9134da |
File details
Details for the file akatsuki_pp_py-1.0.5-cp38-cp38-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp38-cp38-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 847.6 kB
- Tags: CPython 3.8, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0024c7bc2b2d7966f7bd33e9cb4f588d2c7698257c6b626adb458bdcc315a04 |
|
MD5 | ff779d5bd51f1c67326b9954ede09386 |
|
BLAKE2b-256 | 0dce4a2e01dfb67a044209c3c51b451fec89b4e6e020d193341a1f5a25499b44 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp37-none-win_amd64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp37-none-win_amd64.whl
- Upload date:
- Size: 361.2 kB
- Tags: CPython 3.7, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0e28e3767c73960a58904ef3ed1a798a3832bcc88f112387b219778fd828e29 |
|
MD5 | d0d759f1fb6c42fb114c4f7dc10c5901 |
|
BLAKE2b-256 | 4ed8535b677885c305fe79bf1fa7d3209e07d3b01f2561c2ce4420c57052f8e3 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp37-none-win32.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp37-none-win32.whl
- Upload date:
- Size: 342.8 kB
- Tags: CPython 3.7, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d4645c3d20df462fa7775de6a2cd4ff1d25fbbf562a0b21d3dd53eda6227872d |
|
MD5 | 0835ba636759ffe51d2dcba7ee91d836 |
|
BLAKE2b-256 | a620c1d3cb14e5b5c93580e89ec13b961e6669b9216b5e96c08fd44136a8b46a |
File details
Details for the file akatsuki_pp_py-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 467.8 kB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 16d203212272e58cc179a677124ceef2b021d9f2134183f3f5bdfc2a7590603a |
|
MD5 | 468daf79954a64c52679e0a6bfe86a8f |
|
BLAKE2b-256 | 37bb10fbe9bb456ea252a15d387c1ba8a29a2dece110ddcbd844ebdb7047fa08 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 455.4 kB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7751efd54b3a94b1ccbd332412cdf6145e1a0bf8e3eaf479e0524017ec15f419 |
|
MD5 | ce1d1e0f05cd87444f847b01505d1bf1 |
|
BLAKE2b-256 | 5e661d54077016d49991dfa378b131a8b442b34ddc4e4e4da542e9be35adbedb |
File details
Details for the file akatsuki_pp_py-1.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
- Upload date:
- Size: 475.3 kB
- Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e35b77b5e4b222af3c4fcdb643f4231af1074dc09a773e501c75f46fe66c94e9 |
|
MD5 | d9757c44c8365bd3d2eac2b8074215c9 |
|
BLAKE2b-256 | 7137b2068fed39d6dfa4a5fd760f83622c4f91422c94efc2f8659f338ed964e5 |
File details
Details for the file akatsuki_pp_py-1.0.5-cp37-cp37m-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp37-cp37m-macosx_10_12_x86_64.whl
- Upload date:
- Size: 437.5 kB
- Tags: CPython 3.7m, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 99c6cd10cb467415fbff27d4c1bf779f5f7d8af5438ad7b8ee07b9c6bba08b82 |
|
MD5 | 48286ec868aea7b244e09362e1fad273 |
|
BLAKE2b-256 | f2e7795a45adb44b02ecf09751fb971261c06c5dd8035211f2dde8e0fda42dfb |
File details
Details for the file akatsuki_pp_py-1.0.5-cp37-cp37m-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: akatsuki_pp_py-1.0.5-cp37-cp37m-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 847.5 kB
- Tags: CPython 3.7m, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 605744ea0d7ea94606a26211756645e37128368878d6dcb698d0efe412816c70 |
|
MD5 | 75303640255d039c8cecc25bcd03c8ce |
|
BLAKE2b-256 | 20864babeee5cd5ef2148b5b880cb9b4178d4cb4a7e7e07cf576d51051ee0677 |