Skip to main content

A tool to analyze data and perform operations in markets

Project description

Anansi

Dependencies

Python, Pip, Poetry.

To install poetry, on osx, linux or bashonwindows terminals, type it:

curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -

Alternatively, poetry could be installed by pip (supposing you have python and pip already installed):

pip install poetry

Consuming on Jupyter notebook

That is only a suggestion, you could run anansi on any python terminal. Only tested on linux.

Perform the commands:

poetry install
poetry run python -m ipykernel install --user --name=$(basename $(pwd))
poetry run jupyter notebook > jupyterlog 2>&1 &

Straight to the point: Running Default Back Testing Operation

Importing Dependencies

from anansi.tradingbot.models import *
from anansi.tradingbot import traders
from anansi.tradingbot.views import create_user, create_default_operation

Add a new user

my_user_first_name = "John"

create_user(first_name=my_user_first_name,
                   last_name="Doe",
                   email = "{}@email.com".format(my_user_first_name.lower()))

Creating a default operation

my_user = User[1]
create_default_operation(user=my_user)

Instantiating a trader

my_op = Operation.get(id=1)
my_trader = traders.DefaultTrader(operation=my_op)

Run the trader

my_trader.run()

Playing with the database models

Getting all users

users = select(user for user in User)
users.show()
id|first_name|last_name|login_displayed_name|email         
--+----------+---------+--------------------+--------------
1 |John      |Doe      |                    |john@email.com
my_user.first_name
'John'

Some operation attribute

my_op.stop_loss.name
'StopTrailing3T'

Some trader attribute

my_trader.Classifier.parameters.time_frame
'6h'

Updating some attributes

before_update = my_trader.operation.position.side, my_trader.operation.position.exit_reference_price

my_trader.operation.position.update(side="Long", exit_reference_price=1020.94)

after_update = my_trader.operation.position.side, my_trader.operation.position.exit_reference_price

before_update, after_update
(('Zeroed', None), ('Long', 1020.94))

Requesting klines

Klines treated and ready for use, including market indicators methods

The example below uses the 'KlinesFromBroker' class from the 'handlers' module ('marketdata' package), which works as an abstraction over the data brokers, not only serializing requests (in order to respect brokers' limits), but also conforming the klines like a pandas dataframe, extended with market indicator methods.

from anansi.marketdata.handlers import KlinesFromBroker
BinanceKlines = KlinesFromBroker(
  broker_name="binance", ticker_symbol="BTCUSDT", time_frame="1h")
newest_klines = BinanceKlines.newest(2167)
newest_klines
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Open_time Open High Low Close Volume
0 2020-06-17 11:00:00 9483.25 9511.53 9466.00 9478.61 1251.802697
1 2020-06-17 12:00:00 9478.61 9510.88 9477.35 9499.25 1120.426332
2 2020-06-17 13:00:00 9499.24 9565.00 9432.00 9443.48 4401.693008
3 2020-06-17 14:00:00 9442.50 9464.83 9366.09 9410.95 4802.211120
4 2020-06-17 15:00:00 9411.27 9436.54 9388.43 9399.24 2077.135281
... ... ... ... ... ... ...
2162 2020-09-15 13:00:00 10907.94 10917.96 10834.00 10834.71 3326.420940
2163 2020-09-15 14:00:00 10834.71 10879.00 10736.63 10764.19 4382.021477
2164 2020-09-15 15:00:00 10763.37 10815.47 10745.63 10784.46 3531.309654
2165 2020-09-15 16:00:00 10785.23 10827.61 10700.00 10784.23 3348.735166
2166 2020-09-15 17:00:00 10784.23 10812.44 10738.33 10794.84 1931.035921

2167 rows × 6 columns

Applying simple moving average indicators

indicator = newest_klines.apply_indicator.trend.simple_moving_average(number_of_candles=35)
indicator.name, indicator.last(), indicator.serie
('sma_ohlc4_35',
 10669.49407142858,
 0                NaN
 1                NaN
 2                NaN
 3                NaN
 4                NaN
             ...     
 2162    10619.190500
 2163    10632.213571
 2164    10644.682643
 2165    10657.128857
 2166    10669.494071
 Length: 2167, dtype: float64)
newest_klines
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Open_time Open High Low Close Volume
0 2020-06-17 11:00:00 9483.25 9511.53 9466.00 9478.61 1251.802697
1 2020-06-17 12:00:00 9478.61 9510.88 9477.35 9499.25 1120.426332
2 2020-06-17 13:00:00 9499.24 9565.00 9432.00 9443.48 4401.693008
3 2020-06-17 14:00:00 9442.50 9464.83 9366.09 9410.95 4802.211120
4 2020-06-17 15:00:00 9411.27 9436.54 9388.43 9399.24 2077.135281
... ... ... ... ... ... ...
2162 2020-09-15 13:00:00 10907.94 10917.96 10834.00 10834.71 3326.420940
2163 2020-09-15 14:00:00 10834.71 10879.00 10736.63 10764.19 4382.021477
2164 2020-09-15 15:00:00 10763.37 10815.47 10745.63 10784.46 3531.309654
2165 2020-09-15 16:00:00 10785.23 10827.61 10700.00 10784.23 3348.735166
2166 2020-09-15 17:00:00 10784.23 10812.44 10738.33 10794.84 1931.035921

2167 rows × 6 columns

Same as above, but showing indicator column

indicator = newest_klines.apply_indicator.trend.simple_moving_average(
  number_of_candles=35, indicator_column="SMA_OHLC4_n35")
newest_klines
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Open_time Open High Low Close Volume SMA_OHLC4_n35
0 2020-06-17 11:00:00 9483.25 9511.53 9466.00 9478.61 1251.802697 NaN
1 2020-06-17 12:00:00 9478.61 9510.88 9477.35 9499.25 1120.426332 NaN
2 2020-06-17 13:00:00 9499.24 9565.00 9432.00 9443.48 4401.693008 NaN
3 2020-06-17 14:00:00 9442.50 9464.83 9366.09 9410.95 4802.211120 NaN
4 2020-06-17 15:00:00 9411.27 9436.54 9388.43 9399.24 2077.135281 NaN
... ... ... ... ... ... ... ...
2162 2020-09-15 13:00:00 10907.94 10917.96 10834.00 10834.71 3326.420940 10619.190500
2163 2020-09-15 14:00:00 10834.71 10879.00 10736.63 10764.19 4382.021477 10632.213571
2164 2020-09-15 15:00:00 10763.37 10815.47 10745.63 10784.46 3531.309654 10644.682643
2165 2020-09-15 16:00:00 10785.23 10827.61 10700.00 10784.23 3348.735166 10657.128857
2166 2020-09-15 17:00:00 10784.23 10812.44 10738.33 10794.84 1931.035921 10669.494071

2167 rows × 7 columns

Raw klines, using the low level abstraction module "data_brokers"

DISCLAIMER: Requests here are not queued! There is a risk of banning the IP or even blocking API keys if some limits are exceeded. Use with caution.

from anansi.marketdata import data_brokers
BinanceBroker = data_brokers.BinanceDataBroker()
my_klines = BinanceBroker.get_klines(ticker_symbol="BTCUSDT", time_frame="1m")
my_klines
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Open_time Open High Low Close Volume
0 1600165560 10688.12 10691.14 10684.88 10684.88 21.529835
1 1600165620 10684.88 10686.15 10681.84 10685.99 18.487428
2 1600165680 10686.00 10687.65 10684.92 10687.09 22.246376
3 1600165740 10687.09 10689.54 10683.86 10687.26 18.818481
4 1600165800 10687.26 10687.26 10683.71 10685.76 38.281582
... ... ... ... ... ... ...
494 1600195200 10762.43 10763.48 10760.35 10760.75 8.572210
495 1600195260 10760.75 10762.48 10759.30 10759.31 11.089815
496 1600195320 10759.30 10762.22 10755.39 10761.26 27.070820
497 1600195380 10761.26 10761.26 10751.74 10756.02 15.482246
498 1600195440 10755.61 10756.57 10748.03 10748.04 61.153777

499 rows × 6 columns

Same as above, but returning all information get from the data broker

my_klines = BinanceBroker.get_klines(ticker_symbol="BTCUSDT", time_frame="1m", show_only_desired_info=False)
my_klines
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Open_time Open High Low Close Volume Close_time Quote_asset_volume Number_of_trades Taker_buy_base_asset_volume Taker_buy_quote_asset_volume Ignore
0 1600165560 10688.12 10691.14 10684.88 10684.88 21.529835 1600165619 230126.587773 373.0 10.279415 109864.149822 0.0
1 1600165620 10684.88 10686.15 10681.84 10685.99 18.487428 1600165679 197536.180849 336.0 8.256498 88223.566054 0.0
2 1600165680 10686.00 10687.65 10684.92 10687.09 22.246376 1600165739 237738.839831 415.0 13.378805 142975.243246 0.0
3 1600165740 10687.09 10689.54 10683.86 10687.26 18.818481 1600165799 201100.293663 539.0 9.062957 96849.611844 0.0
4 1600165800 10687.26 10687.26 10683.71 10685.76 38.281582 1600165859 409068.511314 534.0 16.799813 179523.708531 0.0
... ... ... ... ... ... ... ... ... ... ... ... ...
494 1600195200 10762.43 10763.48 10760.35 10760.75 8.572210 1600195259 92253.016477 292.0 2.394778 25771.715413 0.0
495 1600195260 10760.75 10762.48 10759.30 10759.31 11.089815 1600195319 119341.014647 277.0 3.064458 32976.256534 0.0
496 1600195320 10759.30 10762.22 10755.39 10761.26 27.070820 1600195379 291245.877535 490.0 14.654896 157679.926758 0.0
497 1600195380 10761.26 10761.26 10751.74 10756.02 15.482246 1600195439 166520.446192 353.0 7.390407 79491.160961 0.0
498 1600195440 10755.61 10756.57 10748.03 10748.04 61.153777 1600195499 657520.935924 585.0 13.436657 144474.084684 0.0

499 rows × 12 columns

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

anansi_toolkit-0.1.0.tar.gz (35.7 kB view details)

Uploaded Source

Built Distribution

anansi_toolkit-0.1.0-py3-none-any.whl (36.4 kB view details)

Uploaded Python 3

File details

Details for the file anansi_toolkit-0.1.0.tar.gz.

File metadata

  • Download URL: anansi_toolkit-0.1.0.tar.gz
  • Upload date:
  • Size: 35.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.9 CPython/3.8.5 Linux/5.7.14-1-MANJARO

File hashes

Hashes for anansi_toolkit-0.1.0.tar.gz
Algorithm Hash digest
SHA256 40ba930095c7295f7a3a868822d7b4d2e5a58a2073493322f049e981f748349c
MD5 2cd136fb231b92762b1114b910f2ba10
BLAKE2b-256 6d53aa6d01488b2686c8935c595bc5ca45434a965fd99c2ea77f2cb1dcdd0859

See more details on using hashes here.

File details

Details for the file anansi_toolkit-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: anansi_toolkit-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 36.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.9 CPython/3.8.5 Linux/5.7.14-1-MANJARO

File hashes

Hashes for anansi_toolkit-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8be3307289ca9202966b1a29bee668ec1e5cd24f03cc877a34d383c5c65d2dc9
MD5 155d1458d3a867b0af883d914249b22b
BLAKE2b-256 0c9dc90d1bb08456c9d13a62a3c35d3fe83f073eab4df706ff6248f4c971e7ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page