Skip to main content

Apriori algorithm.

Project description

Aprioripy: Apriori algorithm.

Apriori algorithm usage:

from apriopy import Apriopy


test_table = pd.DataFrame({
    "items": ["1, 3, 4", "2, 3, 5", "1, 2, 3, 5", "2, 5"]
})

print("Test table")
print(test_table)

ap = Aprioripy(table=test_table)

print("\nFrequency table:")
print(ap.frequency_table)

ap.apriori(min_support=0.5)

for i in ap.association_tables.keys():
    print("\nAssociation table " + i)
    print(ap.association_tables[i])

test_table = pd.DataFrame(
    [
        {"1": 1, "2": 0, "3": 1, "4": 1, "5": 0},
        {"1": 0, "2": 1, "3": 1, "4": 0, "5": 1},
        {"1": 1, "2": 1, "3": 1, "4": 0, "5": 1},
        {"1": 0, "2": 1, "3": 0, "4": 0, "5": 1}
    ]
)

print("\nTest table:")
print(test_table)

ap = Aprioripy(table=test_table, convert=False)

print("\nFrequency table:")
print(ap.frequency_table)

ap.apriori(min_support=0.5)

for i in ap.association_tables.keys():
    print("\nAssociation table " + i)
    print(ap.association_tables[i])

Output:

Test table
        items
0     1, 3, 4
1     2, 3, 5
2  1, 2, 3, 5
3        2, 5

Frequency table:
  item  frequency
0    1       0.50
1    2       0.75
2    3       0.75
3    4       0.25
4    5       0.75

Association table L1
  item  frequency
0    1       0.50
1    2       0.75
2    3       0.75
4    5       0.75

Association table L2
  itemset  frequency
1  (1, 3)       0.50
4  (2, 3)       0.50
6  (2, 5)       0.75
8  (3, 5)       0.50

Association table L3
     itemset  frequency
7  (2, 3, 5)        0.5

Test table:
   1  2  3  4  5
0  1  0  1  1  0
1  0  1  1  0  1
2  1  1  1  0  1
3  0  1  0  0  1

Frequency table:
  item  frequency
0    1       0.50
1    2       0.75
2    3       0.75
3    4       0.25
4    5       0.75

Association table L1
  item  frequency
0    1       0.50
1    2       0.75
2    3       0.75
4    5       0.75

Association table L2
  itemset  frequency
1  (1, 3)       0.50
4  (2, 3)       0.50
6  (2, 5)       0.75
8  (3, 5)       0.50

Association table L3
     itemset  frequency
7  (2, 3, 5)        0.5

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aprioripy-0.0.2.tar.gz (2.6 kB view details)

Uploaded Source

Built Distribution

aprioripy-0.0.2-py3-none-any.whl (3.6 kB view details)

Uploaded Python 3

File details

Details for the file aprioripy-0.0.2.tar.gz.

File metadata

  • Download URL: aprioripy-0.0.2.tar.gz
  • Upload date:
  • Size: 2.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.8

File hashes

Hashes for aprioripy-0.0.2.tar.gz
Algorithm Hash digest
SHA256 f14bcc0e9ef1d31b81cd55062057789754833d36f887ef9bf2151791a503980c
MD5 50f6c689b1baebc6ec18d7549f14113b
BLAKE2b-256 d553a0e9c036278a972e139e685a643a7f0bf6e97001c3519dbfa008c9191664

See more details on using hashes here.

File details

Details for the file aprioripy-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: aprioripy-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 3.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.8

File hashes

Hashes for aprioripy-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2d6078103dbb404e258513dcf5a5784671d23c6a5dec4a128f472f46840cf68e
MD5 d0de76adb280764366c4ff6518ac2807
BLAKE2b-256 cbd97ff71b33b94262f19d6b43321b9135c33b3ff2aa77ebf958d24f28c064a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page