Skip to main content

ARES is an advanced evaluation framework for Retrieval-Augmented Generation (RAG) systems,

Project description

ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems

Paper: ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems

Open In Colab

To implement ARES for scoring your RAG system and comparing to other RAG configurations, you need three components: ​

  • A human preference validation set of annotated query, document, and answer triples for the evaluation criteria (e.g. context relevance, answer faithfulness, and/or answer relevance). There should be at least 50 examples but several hundred examples is ideal.
  • A set of few-shot examples for scoring context relevance, answer faithfulness, and/or answer relevance in your system
  • A much larger set of unlabeled query-document-answer triples outputted by your RAG system for scoring

The ARES training pipeline is three steps: ​

  1. Generate synthetic queries and answers from in-domain passages
  2. Prepare LLM judges for scoring RAG system by fine-tuning on synthetically-generated training data
  3. Deploy the prepared LLM judges to evaluate your RAG system across key performance metrics

Note: We also allow users to skip Steps #1 and #2 deploying a zero/few-shot LLM-as-a-Judge ​

Installation

​ To install the necessary dependencies, run the following commands: ​

conda create -n llm_judge python=3.10 --yes
conda activate llm_judge
pip install -r requirements.txt

​ Additionally, you will need to initialize an OpenAI API key with the following command:

export OPENAI_API_KEY=<your key here>

Step #1: Synthetic Data Generation

​ To generate synthetic training data, use LLM-as-a-Judge_Adaptation/Generate_Synthetic_Queries_and_Answers.py. Replace items in the following command with your dataset and configuration: ​

python LLM-as-a-Judge_Adaptation/Generate_Synthetic_Queries_and_Answers.py \
       --document_filepath <document_filepath> \
       --few_shot_prompt_filename <few_shot_prompt_filename> \
       --synthetic_queries_filename <synthetic_queries_filename> \
       --documents_sampled 10000

Example:

python LLM-as-a-Judge_Adaptation/Generate_Synthetic_Queries_and_Answers.py \
       --document_filepath example_files/document_filepath.tsv \
       --few_shot_prompt_filename example_files/few_shot_prompt_filename.tsv \
       --synthetic_queries_filename output/synthetic_queries_1.tsv \
       --documents_sampled 10000

This script will output a filepath to the generated synthetic queries for the next step. ​

Note: For examples files for document_filepath and few_shot_prompt_filename, please see example_files. ​

Step #2: Fine-tune LLM-as-a-Judge

​ With the generated file under synthetic_queries_filename from the previous step, use LLM-as-a-Judge_Adaptation/General_Binary_Classifier.py to train your LLM-as-a-Judge with the following command: ​

python General_Binary_Classifier.py \
       --classification_dataset <synthetic queries file> \
       --test_set_selection <test_set_selection> \
       --label_column Context_Relevance_Label \
       --num_epochs 10 \
       --patience_value 3 \
       --learning_rate 5e-6

For document_filepath, put the filepath of the synthetic queries generated in the previous step. For test_set_selection, put the filepath of the human annotated examples of your dataset; it should be formatted like the file example_files/evaluation_datasets.tsv.

This script will output a model checkpoint path for the next step.

Step #3: Score RAG System with ARES

​ With the outputted model checkpoint from Step #2, you can now score your RAG system's configurations using ARES with following command in folder RAG_Automatic_Evaluation/: ​

python LLMJudge_RAG_Compared_Scoring.py \
       --alpha 0.05 \
       --num_trials 1000 \
       --evaluation_datasets <evaluation_datasets as list> \
       --checkpoints <checkpoints as list> \
       --labels <label columns as list> \
       --GPT_scoring <True or False> \
       --gold_label_path <gold_label_path>
       --swap_human_labels_for_gpt_labels False

​ For evaluation_datasets, we expect a list of filepaths to query-passage-answer TSVs for each RAG configuration you wish to score.

If you want to use few-shot GPT scoring, switch GPT_scoring to True. You can leave the checkpoints list as blank and specify the GPT model with the tag --gpt_model <model selected>. ​

Note: For examples files of evaluation_datasets and gold_label_path, please see example_files/evaluation_datasets.tsv for formatting.

Results Replication

We include synthetic datasets for key experimental results in synthetic_datasets. The few-shot prompts used for generation and evaluation are included in datasets. We also include instructions for fine-tuning LLM judges in the paper itself. Please reach out to jonsaadfalcon@stanford.edu if you have any further questions.

Citation

To cite our work, please use the following Bibtex:

@misc{saadfalcon2023ares,
      title={ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems}, 
      author={Jon Saad-Falcon and Omar Khattab and Christopher Potts and Matei Zaharia},
      year={2023},
      eprint={2311.09476},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Appendix

Machine requirements and setup when not using OpenAI API

Machine requirements

  • Over ~100 GB of available disk space
  • GPU
    • Should work: A100 (e.g. Standard_NC24ads_A100_v4 on Azure)
    • Does not work:
      • Tested on 2023-12-17 with both Standard_NC6s_v3 and Standard_NC12s_v3, and ran into this error: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 160.00 MiB (GPU 0; 15.77 GiB total capacity; 15.12 GiB already allocated; 95.44 MiB free; 15.12 GiB reserved in total by PyTorch)

Machine setup

For example, on an Azure VM running Linux (ubuntu 20.04), you will need to do the following:

  • Install conda
    • First set of commands (can copy-paste multiple lines)
      • wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
      • chmod +x Miniconda3-latest-Linux-x86_64.sh
      • ./Miniconda3-latest-Linux-x86_64.sh -b
    • Second set of commands (can copy-paste multiple lines)
      • export PATH="~/miniconda3/bin:$PATH"
      • conda init
  • Install gcc
    • sudo apt-get -y update
    • sudo apt-get -y upgrade
    • sudo apt-get -y install build-essential
    • sudo apt-get -y install libpcre3-dev
  • Install NVIDIA drivers
    • sudo apt install ubuntu-drivers-common -y
    • sudo ubuntu-drivers autoinstall
    • sudo reboot
    • SSH in again and confirm the installation was successful by running nvidia-smi
  • cd to ARES folder and follow the rest of the README

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ares-ai-0.1.0.tar.gz (22.9 kB view hashes)

Uploaded Source

Built Distribution

ares_ai-0.1.0-py3-none-any.whl (19.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page