Skip to main content

python package for building artifacts from a computational graph

Project description

artifax

artifax is a Python package to evaluate nodes in a computation graph where the dependencies associated with each node are extracted directly from their function signatures. Here's an example of artifax in action:

>>> from artifax import build
>>> import math
>>> build({
...     'x': math.pi/3,
...     'sin': lambda x: math.sin(x),
...     'cos': lambda x: math.cos(x),
...     'y': lambda sin, cos: 2*sin - 1.2*cos
... })
{'x': 1.0471975511965976, 'sin': 0.8660254037844386, 'cos': 0.5000000000000001, 'y': 1.132050807568877}

Install with pip:

$ python3 -m pip install artifax

A computation graph can be entirely encoded in a standard python dictionary. Each key represents a node or an artifact, that will eventually be computed once all of its dependencies have been calculated. The value associated with each key can be either a constant - a string, a number or an instance of a class, or a function. In the latter case, the function arguments map to other nodes in the computation graph to establish a direct dependency between the nodes.

For example, the following dictionary:

artifacts = {
    'A': 42,
    'B': 7,
    'C': lambda: 10,
    'AB': lambda A, B: A*B,
    'C-B': lambda B, C: C() - B,
    'greeting': 'Hello',
    'message': lambda greeting, A: '{} World! The answer is {}.'.format(greeting, A)
}

yields the following computation graph:

Screenshot

Figure 1. Example of a computation graph.

The build function evalutes the entire computation graph and returns a new dictionary with the same keys as the original one and with the calculated values for each of the nodes in the computation graph.

from artifax import build

artifacts = {
    'A': 42,
    'B': 7,
    'C': lambda: 10,
    'AB': lambda A, B: A*B,
    'C-B': lambda B, C: C() - B,
    'greeting': 'Hello',
    'message': lambda greeting, A: '{} World! The answer is {}.'.format(greeting, A)
}
result = build(artifacts)

for k, v in result.items():
    print('{:<10}: {}'.format(k, v))

outputs

A         : 42
B         : 7
C         : functools.partial(<function <lambda> at 0x102c4fae8>)
AB        : 294
C-B       : 3
greeting  : Hello
message   : Hello World! The answer is 42.

Artifax class

The build function represents the core transformation that yields artifacts. It is entirely stateless and has no side-effects. Given the same input graph, it will always evaluate every single node and generate the same results.

Whilst these features are highly desirable from any core component, the stateful Artifax class can be employed to interface with the build function and provide some additional features and performance enhancements.

from artifax import Artifax, At

def double(x):
    return x*2

afx = Artifax()
afx.set('a', 42)
afx.set('b', At('a', double))
# set also accepts named arguments
afx.set(c=lambda b: -b)

assert len(afx) == 3
assert 'b' in afx

results = afx.build()
for k, v in results.items():
    print(k, v)

# c -84
# a 42
# b 84

Lazy builds

Artifax instances optimize sequential builds by only re-evaluating nodes that have become stale due to an update. For example, given the graph illustrated in Figure 1, if node B is updated, e.g, afx.set('B', -5)), nodes B, AB and C-B get re-evaluated when the build method is invoked, but not any other nodes.

In the example below, the second call to the build method triggers a re-evaluation of node p1 and all the nodes that depend on it. Nodes v2 and m2, on the other hand, do not require re-evaluation since they do not depend on the updated node.

import artifax
import math

class Vector:
    def __init__(self, u, v):
        self.u = u
        self.v = v
    def magnitude(self):
        print('Calculating magnitude of vector {}...'.format(self))
        return math.sqrt(self.u**2 + self.v**2)
    def __repr__(self):
        return '({}, {})'.format(self.u, self.v)

afx = artifax.Artifax(
    p1=(3, 4),
    v1=lambda p1: Vector(*p1),
    m1=lambda v1: v1.magnitude(),
    v2=Vector(5, 12),
    m2=lambda v2: v2.magnitude()
)
_ = afx.build()
print('Updating p1...')
afx.set(p1=(1, 1))
_ = afx.build()
Calculating magnitude of vector (3, 4)...
Calculating magnitude of vector (5, 12)...
Updating p1...
Calculating magnitude of vector (1, 1)...

Targeted builds

The build method accepts an optional argument that specifies which node in your computation graph should be built. Instead of returning the usual dictionary, targeted builds return a tuple containing the value associated with each of the target nodes.

terminal_node_value = afx.build(targets='terminal_node')
some_node, another_node = afx.build(targets=('node1', 'node2'))

Targeted builds only evaluate dependencies for the target node and the target node itself. Any other nodes in the computation graph do not get evaluated.

from artifax import Artifax
afx = Artifax({
    'name': 'World',
    'punctuation': '?',
    'greeting': lambda name, punctuation: 'Hello, {}{}'.format(name, punctuation),
})
greeting = afx.build(targets='greeting')
print(greeting) # prints "Hello, World?"
afx.set('punctuation', '!')
greeting, punctuation = afx.build(targets=('greeting', 'punctuation'))
print(greeting) # prints "Hello, World!"
print('Cool beans{}'.format(punctuation)) # prints "Cool beans!"

Targeted builds are an efficient way of retrieving certain nodes without evaluating the entire computation graph.

Solvers

Depending on the use case, different solvers can be employed to increase performance. The build function and methods accept an optional solver parameter which defaults to linear.

The linear solver

The linear solver topologically sorts the computation graph to define a sequence of nodes to be calculated in an order such that for any node, all of its dependencies appear before in the sequence.

The parallel solver

The parallel solver consumes the computation graph starting from the nodes that have no dependencies and processes them all in parallel. When this initial set of nodes is resolved, their immediate neighbors make up the new frontier which also gets processed in parallel. This procedure continues until there are no more nodes to be calculated. At any step, the solver spawns one new process for each node at the frontier without exceeding the number of available cores minus 1.

The async solver

The async solver takes the parallelism of the parallel solver one step further. It is triggered each time a node evaluation is completed, looking for new nodes that can be started and evaluating them in a new process immediately.

Error handling

If the computation graph represented by the artifacts dictionary is not a DAG (Direct Acyclic Graph), a CircularDependencyError exception is thrown.

import artifax
try:
    _ = artifax.build({'x': lambda x: x+1})
except artifax.CircularDependencyError as err:
    print('Cannot build artifacts: {}'.format(err))
Cannot build artifacts: artifact graph is not a DAG

If a particular node is represented by a function for which any of its arguments isn't part of the computation graph, an UnresolvedDependencyError exception is thrown.

_ = artifax.build({
    'x': 42,
    'p': lambda x, y: x + y
}) # raises UnresolvedDependencyError due to missing 'y' node

However, sometimes this behavior might be desirable if we want nodes to resolve to partially applied functions that can be used elsewhere. If that's the case, the exception can be suppressed by setting the allow_partial_functions optional parameter to build to True.

results = artifax.build({
    'x': 42,
    'p': lambda x, y: x + y
}, allow_partial_functions=True)
print(results['p'](100)) # prints 142

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

artifax-0.2.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

artifax-0.2-py3-none-any.whl (12.8 kB view details)

Uploaded Python 3

File details

Details for the file artifax-0.2.tar.gz.

File metadata

  • Download URL: artifax-0.2.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.0.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.3

File hashes

Hashes for artifax-0.2.tar.gz
Algorithm Hash digest
SHA256 e08b1918a91af9df285ee101a261d424a58d94125235d63686e4d2866d639159
MD5 6e3d5acddf48eb1219a60850c0b8249e
BLAKE2b-256 78a99281880347d9103e5402d0a9eb0dfee9c47b04f7eecd004af84e703a8e71

See more details on using hashes here.

File details

Details for the file artifax-0.2-py3-none-any.whl.

File metadata

  • Download URL: artifax-0.2-py3-none-any.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.0.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.3

File hashes

Hashes for artifax-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6644ee9448b899771330257dbe7d42c9a14bd57e2e03f74f312ec585906aec6e
MD5 033461357ab06841707fc3de22894886
BLAKE2b-256 81b53269ae56af1fa09b77b70bbc8a369783f57422edf9f34d75e888f21eee99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page