Skip to main content

The library provides a standardized way to connect to DB, and Base DAO class implementation

Project description

Ash DAL

The library provides a standardized way to connect to DB, and Base DAO class implementation

Installation

PyPi

pip install ash-dal

# OR

poetry add ash-dal

From github

In order to install Ash DAL directly from GitHub repository, run:

pip install git+https://github.com/meetash/ash-dal.git@main

# OR

poetry add git+https://github.com/meetash/ash-dal.git@main

Usage

Database class

There are two options: sync or async database connection.

Synchronous database

from ash_dal import Database, URL
from ash_dal.utils import prepare_ssl_context
from models import User


ssl_context = prepare_ssl_context(
    ssl_root_dir='/tmp/certs',
    client_cert_path='client-cert.pem',
    client_key_path='client-key.pem',
    server_ca_path='server-ca.pem'
)

db_url = URL.create(
    drivername="mysql+pymysql",
    username="my_db_user",
    password="S3cret",
    host="127.0.0.1",
    port=3306,
    database="my_db",
)

read_replica_db_url = URL.create(
    drivername="mysql+pymysql",
    username="my_db_user",
    password="S3cret",
    host="127.0.0.1",
    port=3307,
    database="my_db",
)


DATABASE = Database(
	db_url=db_url,
	read_replica_url=read_replica_db_url,
	ssl_context=ssl_context,
    read_replica_ssl_context=ssl_context
)


def get_users(db: Database):
	with db.session as session:
		users = session.scalars(User)
	return users

Asynchronous database

from ash_dal import AsyncDatabase, URL
from ash_dal.utils import prepare_ssl_context
from models import User


ssl_context = prepare_ssl_context(
    ssl_root_dir='/tmp/certs',
    client_cert_path='client-cert.pem',
    client_key_path='client-key.pem',
    server_ca_path='server-ca.pem'
)

db_url = URL.create(
    drivername="mysql+aiomysql",
    username="my_db_user",
    password="S3cret",
    host="127.0.0.1",
    port=3306,
    database="my_db",
)

read_replica_db_url = URL.create(
    drivername="mysql+aiomysql",
    username="my_db_user",
    password="S3cret",
    host="127.0.0.1",
    port=3307,
    database="my_db",
)


DATABASE = AsyncDatabase(
	db_url=db_url,
	read_replica_url=read_replica_db_url,
	ssl_context=ssl_context,
    read_replica_ssl_context=ssl_context
)

async def async_get_users(db: AsyncDatabase):
	async with db.session as session:
		users = await session.scalars(User)
	return users

DAO Base class

Like you can use sync/async Database classes, there are also two variations of DAO Base class

Synchronous DAO Base class

from dataclasses import dataclass

from sqlalchemy import String
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column
from ash_dal import BaseDAO, Database, URL


class Base(DeclarativeBase):
    pass


class ExampleORMModel(Base):
    __tablename__ = "example_table"

    id: Mapped[int] = mapped_column(autoincrement=True, primary_key=True)
    first_name: Mapped[str] = mapped_column(String(64))
    last_name: Mapped[str] = mapped_column(String(64))
    age: Mapped[int]


@dataclass()
class ExampleEntity:
    id: int
    first_name: str
    last_name: str
    age: int


class ExampleDAO(BaseDAO[ExampleEntity]):
    __entity__ = ExampleEntity
    __model__ = ExampleORMModel


if __name__ == '__main__':
    db = Database(
        db_url=URL.create(
            drivername="mysql+pymysql",
            username="my_db_user",
            password="S3cret",
            host="127.0.0.1",
            port=3306,
            database="my_db",
        )
    )
    dao = ExampleDAO(database=db)

    entity = dao.get_by_pk(pk='some-primary-key')

Asynchronous DAO Base class

from dataclasses import dataclass

from sqlalchemy import String
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column
from ash_dal import AsyncBaseDAO, AsyncDatabase, URL
import asyncio


class Base(DeclarativeBase):
    pass


class ExampleORMModel(Base):
    __tablename__ = "example_table"

    id: Mapped[int] = mapped_column(autoincrement=True, primary_key=True)
    first_name: Mapped[str] = mapped_column(String(64))
    last_name: Mapped[str] = mapped_column(String(64))
    age: Mapped[int]


@dataclass()
class ExampleEntity:
    id: int
    first_name: str
    last_name: str
    age: int


class ExampleDAO(AsyncBaseDAO[ExampleEntity]):
    __entity__ = ExampleEntity
    __model__ = ExampleORMModel


if __name__ == '__main__':
    db = AsyncDatabase(
        db_url=URL.create(
            drivername="mysql+aiomysql",
            username="my_db_user",
            password="S3cret",
            host="127.0.0.1",
            port=3306,
            database="my_db",
        )
    )
    dao = ExampleDAO(database=db)
    entity = asyncio.run(dao.get_by_pk(pk='some-primary-key'))

BaseDAO methods

The main goal of BaseDAO class is to provide CRUD methods that could be useful while building a basic CRUD API. BaseDAO class provides the following default methods:

Data fetching methods

  • BaseDAO.get_by_pk(pk) - Using this method you can fetch an entity by its primary key.
    entity = dao.get_by_pk(pk='AWABCD1234')
    
  • BaseDAO.all - Using this method you can fetch all entities from the database. It's might be useful for fetching data from small tables where you don't actually need pagination (configs etc)
    entities = dao.get_all()
    
  • BaseDAO.get_page(page_index, [page_size]) - Fetch a page with entities by page index. If the index is out of range, an empty page will be returned. If page_size is not passed - the default page size (20) will be applied.
    page = dao.get_page(page_index=2, page_size=10)
    for entity in page:
        # Do some stuff with entity
        ...
    
  • BaseDAO.paginate([specification, page_size]) - An iterator that returns pages with entities. A specification can be applied to fetch filtered data.
    for page in dao.paginate(specification={'status': 'notified'}, page_size=15):
        # Do some stuff with page
        ...
    
  • BaseDAO.filter(specification) - Fetch entities from database by specification. It's might be useful for fetching filtered data from small tables where you don't actually need pagination (configs etc)
    entities = dao.filter(specification={'labId': 2})
    

Data manipulation methods

  • BaseDAO.create(data) - Create an entity in database based on passed data. Returns back an entity
    data = {'foo': 'bar'}
    entity = dao.create(data=data)
    
  • BaseDAO.bulk_create(data) - Create multiple entities within one query. Unlike the previous method this one doesn't return anything.
    data = [{'foo': 'bar'}, {'foo': 'beer'}]
    dao.bulk_create(data=data)
    
  • BaseDAO.update(specification, update_data) - Patch entity(ies) by specification.
    update_data = {'foo': 'bar'}
    is_updated = dao.update(specification={'foo': 'beer'}, update_data=update_data)
    
  • BaseDAO.delete(specification) - Remove entity(ies) by specification.
    is_removed = dao.delete(specification={'id': 'some-id'},)
    

Pagination strategies

By default the BaseDAO class uses the simplest pagination strategy that is based on SQL offset & limit mechanisms. The library provides one more strategy out of the box that is called deferred join pagination. You can learn more about it here.

If you want to change the pagination strategy for you DAO class, you can do it by re-defining the __paginator_factory__ field inside your DAO class:

from ash_dal import BaseDAO, DeferredJoinPaginator
from ash_dal.utils import DeferredJoinPaginatorFactory, AsyncDeferredJoinPaginator

class ExampleEntity:
    ...

class ExampleORMModel:
    id: int
    ...

class ExampleDAO(BaseDAO[ExampleEntity]):
    __entity__ = ExampleEntity
    __model__ = ExampleORMModel
    __paginator_factory__ = DeferredJoinPaginatorFactory(
        paginator_class=DeferredJoinPaginator,
        pk_field=ExampleORMModel.id,
    )

# OR async

class ExampleAsyncDAO(BaseDAO[ExampleEntity]):
    __entity__ = ExampleEntity
    __model__ = ExampleORMModel
    __paginator_factory__ = DeferredJoinPaginatorFactory(
        paginator_class=AsyncDeferredJoinPaginator,
        pk_field=ExampleORMModel.id,
    )

Custom pagination strategy

You can also define your own pagination strategy. Be aware that your paginator class should implement IPaginator or IAsyncPaginator interfaces:

from ash_dal.utils.paginator.interface import IPaginator, IAsyncPaginator
from ash_dal import PaginatorPage
import typing as t

class ExampleORM:
    ...

class MyPaginator(IPaginator[ExampleORM]):
    def get_page(self, page_index: int) -> PaginatorPage[ExampleORM]:
        # Do page fetching
        ...

    def paginate(self) -> t.Iterator[PaginatorPage[ExampleORM]]:
        # Do pagination
        ...
    @property
    def size(self) -> int:
        # Get pages count
        return 10

# or async paginator

class MyAsyncPaginator(IAsyncPaginator[ExampleORM]):
    async def get_page(self, page_index: int) -> PaginatorPage[ExampleORM]:
        # Do page fetching asynchronously
        ...

    async def paginate(self) -> t.AsyncIterator[PaginatorPage[ExampleORM]]:
        # Do pagination asynchronously
        ...
    @property
    async def size(self) -> int:
        # Get pages count asynchronously
        return 10

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ash_dal-0.2.1.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

ash_dal-0.2.1-py3-none-any.whl (17.1 kB view details)

Uploaded Python 3

File details

Details for the file ash_dal-0.2.1.tar.gz.

File metadata

  • Download URL: ash_dal-0.2.1.tar.gz
  • Upload date:
  • Size: 11.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.4 Linux/6.5.0-1025-azure

File hashes

Hashes for ash_dal-0.2.1.tar.gz
Algorithm Hash digest
SHA256 b892332636602265eecfe317cd335da6b2e50306b8e843fdb53932846c7d00ad
MD5 ec108d8745af0539ef519fa6f47f5d60
BLAKE2b-256 187cd661e52030956ad287301f32c33adbb600e0c4d0ed9830022a51591aec5d

See more details on using hashes here.

File details

Details for the file ash_dal-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: ash_dal-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 17.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.4 Linux/6.5.0-1025-azure

File hashes

Hashes for ash_dal-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 88a49fb21e3be3eedc5d9d8dcb16585472bb80903af9ebf4e718752c8e31a5eb
MD5 d21f34eb855db4a41ab32f484e9515d9
BLAKE2b-256 cfac5d803cd820456e80270e540d93542774bf615b8e3e32b0d81a31ac32eaf9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page