Skip to main content

Astrometry.net solver interface

Project description

Astrometry

Astrometry turns a list of star positions into a pixel-to-sky transformation (WCS) by calling C functions from the Astrometry.net library (https://astrometry.net).

Astrometry.net star index files ("series") are automatically downloaded when required.

This package is useful for solving plates from a Python script, comparing star extraction methods, or hosting a simple local version of Astrometry.net with minimal dependencies. See https://github.com/dam90/astrometry for a more complete self-hosting solution.

Unlike Astrometry.net, Astrometry does not include FITS parsing or image pre-processing algorithms. Stars must be provided as a list of pixel positions.

This library works on Linux and macOS, but not Windows (at the moment). WSL should work but has not been tested.

We are not the authors of the Astrometry.net library. You should cite works from https://astrometry.net/biblio.html if you use the Astrometry.net algorithm via this package.

Get started

python3 -m pip install astrometry
import astrometry

solver = astrometry.Solver(
    astrometry.series_5200.index_files(
        cache_directory="astrometry_cache",
        scales={6},
    )
)

stars = [
    [388.9140568247906, 656.5003281719216],
    [732.9210858972549, 473.66395545775106],
    [401.03459504299843, 253.788113189415],
    [312.6591868096163, 624.7527729425295],
    [694.6844564647456, 606.8371776658344],
    [741.7233477959561, 344.41284826261443],
    [867.3574610200455, 672.014835980283],
    [1063.546651153479, 593.7844603550848],
    [286.69070190952704, 422.170016812049],
    [401.12779619355155, 16.13543616977013],
    [205.12103484692776, 698.1847350789413],
    [202.88444768690894, 111.24830187635557],
    [339.1627757703069, 86.60739435924549],
]

solution = solver.solve(
    stars=stars,
    size_hint=None,
    position_hint=None,
    solution_parameters=astrometry.SolutionParameters(),
)

if solution.has_match():
    print(f"{solution.best_match().center_ra_deg=}")
    print(f"{solution.best_match().center_dec_deg=}")
    print(f"{solution.best_match().scale_arcsec_per_pixel=}")

solve is thread-safe. It can be called any number of times from the same Solver object.

Examples

Provide size and position hints

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=astrometry.SizeHint(
        lower_arcsec_per_pixel=1.0,
        upper_arcsec_per_pixel=2.0,
    ),
    position_hint=astrometry.PositionHint(
        ra_deg=65.7,
        dec_deg=36.2,
        radius_deg=1.0,
    ),
    solution_parameters=...
)

Print progress information (download and solve)

import astrometry
import logging

logging.getLogger().setLevel(logging.INFO)

solver = ...
solution = ...

Print field stars metadata

Astrometry extracts metadata from the star index ("series"). See Choosing series for a description of the available data.

import astrometry

solver = ...
solution = ...

if solution.has_match():
    for star in solution.best_match().stars:
        print(f"{star.ra_deg}º, {star.dec_deg}º:", star.metadata)

Calculate field stars pixel positions with astropy

import astrometry
import astropy.wcs

solver = ...
solution = ...

if solution.has_match():
    wcs = astropy.wcs.WCS(solution.best_match().wcs_fields)
    pixels = wcs.all_world2pix(
        [[star.ra_deg, star.dec_deg] for star in solution.best_match().stars],
        0,
    )
    # pixels is a len(solution.best_match().stars) x 2 numpy array of float values

astropy.wcs.WCS provides many more functions to probe the transformation properties and convert from and to pixel coordinates. See https://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html for details.

Print series description and size (without downloading them)

import astrometry

print(astrometry.series_5200_heavy.description)
print(astrometry.series_5200_heavy.size_as_string({2, 3, 4}))

See Choosing Series for a list of available series.

Disable tune-up and distortion

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        sip_order=0,
        tune_up_logodds_threshold=None,
    ),
)

Stop the solver early using the log-odds callback

Return after the first match

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        logodds_callback=lambda logodds_list: astrometry.Action.STOP,
    ),
)

Return early if the best log-odds are larger than 100.0

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        logodds_callback=lambda logodds_list: (
            astrometry.Action.STOP
            if logodds_list[0] > 100.0
            else astrometry.Action.CONTINUE
        ),
    ),
)

Return early if there are at least ten matches

import astrometry

solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        logodds_callback=lambda logodds_list: (
            astrometry.Action.STOP
            if len(logodds_list) >= 10.0
            else astrometry.Action.CONTINUE
        ),
    ),
)

Return early if the three best matches are similar

import astrometry

def logodds_callback(logodds_list: list[float]) -> astrometry.Action:
    if len(logodds_list) < 3:
        return astrometry.Action.CONTINUE
    if logodds[1] > logodds[0] - 10 and logodds[2] > logodds[0] - 10:
        return astrometry.Action.STOP
    return astrometry.Action.CONTINUE


solver = ...
solution = solver.solve(
    stars=...,
    size_hint=...,
    position_hint=...,
    solution_parameters=astrometry.SolutionParameters(
        logodds_callback=logodds_callback,
    ),
)

Choosing series

This library downloads series from http://data.astrometry.net. A solver can be instantiated with multiple series and scales as follows:

import astrometry

solver = astrometry.Solver(
    astrometry.series_5200.index_files(
        cache_directory="astrometry_cache",
        scales={4, 5, 6},
    )
    + astrometry.series_4200.index_files(
        cache_directory="astrometry_cache",
        scales={6, 7, 12},
    )
)

Astrometry.net gives the following recommendations to choose a scale:

Each index file contains a large number of “skymarks” (landmarks for the sky) that allow our solver to identify your images. The skymarks contained in each index file have sizes (diameters) within a narrow range. You probably want to download index files whose quads are, say, 10% to 100% of the sizes of the images you want to solve.

For example, let’s say you have some 1-degree square images. You should grab index files that contain skymarks of size 0.1 to 1 degree, or 6 to 60 arcminutes. Referring to the table below, you should [try index files with scales 3 to 9]. You might find that the same number of fields solve, and faster, using just one or two of the index files in the middle of that range - in our example you might try [5, 6 and 7].

-- http://astrometry.net/doc/readme.html

Scale 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Skymark diameter (arcmin) [2.0, 2.8] [2.8, 4.0] [4.0, 5.6] [5.6, 8.0] [8, 11] [11, 16] [16, 22] [22, 30] [30, 42] [42, 60] [60, 85] [85, 120] [120, 170] [170, 240] [240, 340] [340, 480] [480, 680] [680, 1000] [1000, 1400] [1400, 2000]

The table below lists series sizes and properties (we copied the descriptions from http://data.astrometry.net). You can access a series' object with astrometry.series_{name} (for example astrometry.series_4200).

Name Total size Scales Description Metadata
4100 0.36 GB [7, 19] built from the Tycho-2 catalog, good for images wider than 1 degree, recommended MAG_BT: float
MAG_VT: float
MAG_HP: float
MAG: float
4200 33.78 GB [0, 19] built from the near-infared 2MASS survey, runs out of stars at the low end, most users will probably prefer 4100 or 5200 j_mag: float
5000 76.24 GB [0, 7] an older version from Gaia-DR2 but without Tycho-2 stars merged in, our belief is that series_5200 will work better than this one source_id: int
phot_g_mean_mag: float
phot_bp_mean_mag: float
phot_rp_mean_mag: float
parallax: float
parallax_error: float
pmra: float
pmra_error: float
pmdec: float
pmdec_error: float
ra: float
dec: float
ref_epoch: float
5200 36.14 GB [0, 6] LIGHT version built from Tycho-2 + Gaia-DR2, good for images narrower than 1 degree, combine with 4100-series for broader scale coverage, the LIGHT version contains smaller files with no additional Gaia-DR2 information tagged along, recommended -
5200_heavy 79.67 GB [0, 6] HEAVY version same as 5200, but with additional Gaia-DR2 information (magnitude in G, BP, RP, proper motions and parallaxes), handy if you want that extra Gaia information for matched stars ra: float
dec: float
mag: float
ref_cat: str
ref_id: int
pmra: float
pmdec: float
parallax: float
ra_ivar: float
dec_ivar: float
pmra_ivar: float
pmdec_ivar: float
parallax_ivar: float
phot_bp_mean_mag: float
phot_rp_mean_mag: float
6000 1.20 GB [4, 6] very specialized, uses GALEX Near-UV measurements, and only a narrow range of scales fuv_mag: float
nuv_mag: float
6100 1.58 GB [4, 6] very specialized, uses GALEX Far-UV measurements, and only a narrow range of scales fuv_mag: float
nuv_mag: float

The table below indicates the total file size for each scale (most series have multiple index files per scale).

Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
4100 - - - - - - - 165.00 MB 94.55 MB 49.77 MB 24.87 MB 10.21 MB 5.30 MB 2.73 MB 1.38 MB 740.16 kB 408.96 kB 247.68 kB 187.20 kB 144.00 kB
4200 14.22 GB 9.25 GB 5.06 GB 2.63 GB 1.31 GB 659.09 MB 328.25 MB 165.44 MB 81.84 MB 41.18 MB 20.52 MB 8.02 MB 4.17 MB 2.16 MB 1.10 MB 596.16 kB 339.84 kB 213.12 kB 164.16 kB 132.48 kB
5000 34.79 GB 20.19 GB 10.74 GB 5.44 GB 2.71 GB 1.36 GB 676.79 MB 340.73 MB - - - - - - - - - - - -
5200 17.20 GB 9.49 GB 4.86 GB 2.45 GB 1.22 GB 614.89 MB 307.72 MB - - - - - - - - - - - - -
5200_heavy 36.46 GB 21.20 GB 11.29 GB 5.72 GB 2.85 GB 1.43 GB 714.56 MB - - - - - - - - - - - - -
6000 - - - - 892.55 MB 457.66 MB 233.23 MB - - - - - - - - - - - - -
6100 - - - - 599.33 MB 384.09 MB 214.79 MB - - - - - - - - - - - - -

Documentation

Solver

class Solver:
    def __init__(self, index_files: list[pathlib.Path]): ...

    def solve(
        self,
        stars: typing.Iterable[SupportsFloatMapping],
        size_hint: typing.Optional[SizeHint],
        position_hint: typing.Optional[PositionHint],
        solution_parameters: SolutionParameters,
    ) -> Solution: ...

solve is thread-safe and can be called any number of times.

  • index_files: List of index files to use for solving. The list need not come from a Series object. Series subsets and combinations are possible as well.
  • star: iterator over a list of pixel coordinates for the input stars.
  • size_hint: Optional angular pixel size range (SizeHint). Significantly speeds up solve when provided. If size_hint is None, the range [0.1, 1000.0] is used. This default range can be changed by setting astrometry.DEFAULT_LOWER_ARCSEC_PER_PIXEL and astrometry.DEFAULT_UPPER_ARCSEC_PER_PIXEL to other values.
  • position_hint: Optional field center Ra/Dec coordinates and error radius (PositionHint). Significantly speeds up solve when provided. If position_hint is None, the entire sky is used (radius_deg = 180.0).
  • solution_parameters: Advanced solver parameters (SolutionParameters)

SizeHint

@dataclasses.dataclass
class SizeHint:
    lower_arcsec_per_pixel: float
    upper_arcsec_per_pixel: float

lower_arcsec_per_pixel and upper_arcsec_per_pixel must be larger than 0 and upper_arcsec_per_pixel must be smaller than or equal to upper_arcsec_per_pixel.

PositionHint

@dataclasses.dataclass
class PositionHint:
    ra_deg: float
    dec_deg: float
    radius_deg: float
  • ra_deg must be in the range [0.0, 360.0[.
  • dec_deg must be in the range [-90.0, 90.0].
  • radius must be larger than or equal to zero.

All values are in degrees and must use the same frame of reference as the index files. Astrometry.net index files use J2000 FK5 (https://docs.astropy.org/en/stable/api/astropy.coordinates.FK5.html). ICRS and FK5 differ by less than 0.1 arcsec (https://www.iers.org/IERS/EN/Science/ICRS/ICRS.html).

Action

class Action(enum.Enum):
    STOP = 0
    CONTINUE = 1

Parity

class Parity(enum.IntEnum):
    NORMAL = 0
    FLIP = 1
    BOTH = 2

SolutionParameters

@dataclasses.dataclass
class SolutionParameters:
    solve_id: typing.Optional[str] = None
    uniformize_index: bool = True
    deduplicate: bool = True
    sip_order: int = 3
    sip_inverse_order: int = 0
    distance_from_quad_bonus: bool = True
    positional_noise_pixels: float = 1.0
    distractor_ratio: float = 0.25
    code_tolerance_l2_distance: float = 0.01
    minimum_quad_size_pixels: typing.Optional[float] = None
    minimum_quad_size_fraction: float = 0.1
    maximum_quad_size_pixels: float = 0.0
    maximum_quads: int = 0
    maximum_matches: int = 0
    parity: Parity = Parity.BOTH
    tune_up_logodds_threshold: typing.Optional[float] = 14.0
    output_logodds_threshold: float = 21.0
    slices_generator: typing.Callable[[int], typing.Iterable[tuple[int, int]]] = astrometry.batches_generator(25)
    logodds_callback: typing.Callable[[list[float]], Action] = lambda _: Action.CONTINUE
  • solve_id: Optional plate identifier used in logging messages. If solve_id is None, it is automatically assigned a unique integer. The value can be retrieved from the Solution object (solution.solve_id).
  • uniformize_index: Uniformize field stars at the matched index scale before verifying a match.
  • deduplicate: De-duplicate field stars before verifying a match.
  • sip_order: Polynomial order of the Simple Imaging Polynomial distortion (see https://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/shupeADASS.pdf). 0 disables SIP distortion. tune_up_logodds_threshold must be None if sip_order is 0.
  • sip_inverse_order: Polynomial order of the inversee Simple Polynomial distortion. Usually equal to sip_order. 0 means "equal to sip_order".
  • distance_from_quad_bonus: Assume that stars far from the matched quad will have larger positional variance.
  • positional_noise_pixels: Expected error on the positions of stars.
  • distractor_ratio: Fraction of distractors in the range ]0, 1].
  • code_tolerance_l2_distance: Code tolerance in 4D codespace L2 distance.
  • minimum_quad_size_pixels: Minimum size of field quads to try, None calculates the size automatically as minimum_quad_size_fraction * min(Δx, Δy), where Δx (resp. Δy) is the maximum x distance (resp. y distance) between stars in the field.
  • minimum_quad_size_fraction: Only used if minimum_quad_size_pixels is None (see above).
  • maximum_quad_size_pixels: Maximum size of field quads to try, 0.0 means no limit.
  • maximum_quads: Number of field quads to try, 0 means no limit.
  • maximum_matches: Number of quad matches to try, 0 means no limit.
  • parity: Parity.NORMAL does not flip the axes, Parity.FLIP does, and Parity.BOTH tries flipped and non-flipped axes (at the cost of doubling computations).
  • tune_up_logodds_threshold: Matches whose log-odds are larger than this value are tuned-up (SIP distortion estimation) and accepted if their post-tune-up log-odds are larger than output_logodds_threshold. None disables tune-up and distortion estimation (SIP). The default Astrometry.net value is math.log(1e6).
  • output_logodds_threshold: Matches whose log-odds are larger than this value are immediately accepted (added to the solution matches). The default Astrometry.net value is math.log(1e9).
  • slices_generator: User-provided function that takes a number of stars as parameter and returns an iterable (such as list) of two-elements tuples representing ranges. The first tuple item (start) is included while the second tuple item (end) is not. The returned ranges can have a variable size and/or overlap. The algorithm compares each range with the star catalogue sequentially. Small ranges significantly speed up the algorithm but increase the odds of missing matches. astrometry.batches_generator(n) generates non-overlapping batches of n stars.
  • logodds_callback: User-provided function that takes a list of matches log-odds as parameter and returns an astrometry.Action object. astrometry.Action.CONTINUE tells the solver to keep searching for matches whereas astrometry.Action.STOP tells the solver to return the current matches immediately. The log-odds list is sorted from highest to lowest value and should not be modified by the callback function.

Accepted matches are always tuned up, even if they hit tune_up_logodds_threshold and were already tuned-up. Since log-odds are compared with the thresholds before the tune-up, the final log-odds are often significantly larger than output_logodds_threshold. Set tune_up_logodds_threshold to a value larger than or equal to output_logodds_threshold to disable the first tune-up, and None to disable tune-up altogether. Tune-up logic is equivalent to the following Python snippet:

# This (pseudo-code) snippet assumes the following definitions:
# match: candidate match object
# log_odds: current match log-odds
# add_to_solution: appends the match to the solution list
# tune_up: tunes up a match object and returns the new match and the new log-odds
if tune_up_logodds_threshold is None:
    if log_odds >= output_logodds_threshold:
        add_to_solution(match)
else:
    if log_odds >= output_logodds_threshold:
        tuned_up_match, tuned_up_loggods = tune_up(match)
        add_to_solution(tuned_up_match)
    elif log_odds >= tune_up_logodds_threshold:
        tuned_up_match, tuned_up_loggods = tune_up(match)
        if tuned_up_loggods >= output_logodds_threshold:
            tuned_up_twice_match, tuned_up_twice_loggods = tune_up(tuned_up_match)
            add_to_solution(tuned_up_twice_match)

Astrometry.net gives the following description of the tune-up algorithm. See tweak2 in astrometry.net/solver/tweak2.c for the implementation.

Given an initial WCS solution, compute SIP polynomial distortions using an annealing-like strategy. That is, it finds matches between image and reference catalog by searching within a radius, and that radius is small near a region of confidence, and grows as you move away. That makes it possible to pick up more distant matches, but they are downweighted in the fit. The annealing process reduces the slope of the growth of the matching radius with respect to the distance from the region of confidence.

-- astrometry.net/include/astrometry/tweak2.h

Solution

@dataclasses.dataclass
class Solution:
    solve_id: str
    matches: list[Match]

    def has_match(self) -> bool: ...

    def best_match(self) -> Match: ...

matches are sorted in descending log-odds order. best_match returns the first match in the list.

Match

@dataclasses.dataclass
class Match:
    logodds: float
    center_ra_deg: float
    center_dec_deg: float
    scale_arcsec_per_pixel: float
    index_path: pathlib.Path
    stars: tuple[Star, ...]
    quad_stars: tuple[Star, ...]
    wcs_fields: dict[str, tuple[typing.Any, str]]
  • logodds: Log-odds (https://en.wikipedia.org/wiki/Logit) of the match.
  • center_ra_deg: Right ascension of the stars bounding box's center, in degrees and in the frame of reference of the index (J200 FK5 for Astrometry.net series).
  • center_dec_deg: Declination of the stars bounding box's center in degrees and in the frame of reference of the index (J200 FK5 for Astrometry.net series).
  • scale_arcsec_per_pixel: Pixel scale in arcsec per pixel.
  • index_path: File system path of the index file used for this match.
  • stars: List of visible index stars. This list is almost certainly going to differ from the input stars list.
  • quad_stars: The index stars subset (usually 4 but can be 3 or 5) used in the hash code search step (see https://arxiv.org/pdf/0910.2233.pdf, 2. Methods).
  • wcs_fields: WCS fields describing the transformation between pixel coordinates and world coordinates. This dictionary can be passed directly to astropy.wcs.WCS.

Star

@dataclasses.dataclass
class Star:
    ra_deg: float
    dec_deg: float
    metadata: dict[str, typing.Any]

ra_deg and dec_deg are in degrees and use the same frame of reference as the index files. Astrometry.net index files use J2000 FK5 (https://docs.astropy.org/en/stable/api/astropy.coordinates.FK5.html). ICRS and FK5 differ by less than 0.1 arcsec (https://www.iers.org/IERS/EN/Science/ICRS/ICRS.html).

The contents of metadata depend on the data available in index files. See Series for details.

Series

@dataclasses.dataclass
class Series:
    name: str
    description: str
    scale_to_sizes: dict[int, tuple[int, ...]]
    url_pattern: str

    def size(self, scales: typing.Optional[set[int]] = None): ...

    def size_as_string(self, scales: typing.Optional[set[int]] = None): ...

    def index_files(
        self,
        cache_directory: typing.Union[bytes, str, os.PathLike],
        scales: typing.Optional[set[int]] = None,
    ) -> list[pathlib.Path]: ...
  • name defines the cache subdirectory name.
  • description is a copy of the text description in http://data.astrometry.net.
  • scale_to_sizes maps each available HEALPix resolution to index files sizes in bytes. The smaller the scale, the larger the number of HEALPix subdivisions.
  • url_pattern is the base pattern used to generate file download links.
  • size returns the cumulative file sizes for the given scales in bytes. If scales is None, all the scales available for the series are used.
  • size_as_string returns a human-readable string representation of size.
  • index_files returns index files paths for the given scales (or all available scales if scales is None). This function downloads files that are not already in the cache directory. cache_directory is created if it does not exist. Download automatically resumes for partially downloaded files.

Change the constants astrometry.CHUNK_SIZE, astrometry.DOWNLOAD_SUFFIX and astrometry.TIMEOUT to configure the downloader parameters.

batches_generator

def batches_generator(
    batch_size: int,
) -> typing.Callable[[int], typing.Iterable[tuple[int, int]]]:
    ...
  • batch_size sets the size of the generated batches.

batches_generator returns a slices generator compatible with SolutionParameters.slices_generator. The slices are non-overlapping and non-full slices are ignored. For instance, a batch size of 25 over 83 stars would generate the slices (0, 25), (25, 50), and (50, 75).

SupportsFloatMapping

class SupportsFloatMapping(typing.Protocol):
    def __getitem__(self, index: typing.SupportsIndex, /) -> typing.SupportsFloat:
        ...

Contribute

Clone this repository and pull its submodule:

git clone --recursive https://github.com/neuromorphicsystems/astrometry.git
cd astrometry

or

git clone https://github.com/neuromorphicsystems/astrometry.git
cd astrometry
git submodule update --recursive

Format the code:

clang-format -i astrometry_extension/astrometry_extension.c

Build a local version:

python3 -m pip install -e .
# use 'CC="ccache clang" python3 -m pip install -e .' to speed up incremental builds

Publish

  1. Bump the version number in setup.py.

  2. Create a new release on GitHub.

MSVC compatibility (work in progress)

  • fitsbin.c, kdtree_internal.c, kdtree_internal_fits.c, solver.c: replace Variable Length Arrays (VAL) with _alloca (type name[size] -> type* name = _alloca(size))
  • fitsbin.c, fitsioutils.c, fitstable.c: cast void* to char* to enable pointer arithmetic
  • anqfits.c, verify.c: #define debug(args...) -> #define debug(...)
  • qfits_time.c: remove #include <pwd.h>
  • log.h, keywords.h: remove __attribute__ directives
  • bl.c: remove redundant bl.inc and bl_nl.c includes
  • replace all POSIX calls (file IO, network, select...). This requires significant effort when targeting the entire Astrometry.net library. It might be less complicated with Astrometry, which uses only a subset of Astrometry.net.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

astrometry-4.0.0.tar.gz (496.6 kB view details)

Uploaded Source

Built Distributions

astrometry-4.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (509.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

astrometry-4.0.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (531.9 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (540.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

astrometry-4.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (509.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

astrometry-4.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (532.1 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (540.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

astrometry-4.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (524.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

astrometry-4.0.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (542.4 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (540.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

astrometry-4.0.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

astrometry-4.0.0-cp311-cp311-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

astrometry-4.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

astrometry-4.0.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.0.0-cp311-cp311-macosx_11_0_arm64.whl (569.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

astrometry-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl (668.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

astrometry-4.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

astrometry-4.0.0-cp310-cp310-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

astrometry-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

astrometry-4.0.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.0.0-cp310-cp310-macosx_11_0_arm64.whl (569.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

astrometry-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl (667.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

astrometry-4.0.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

astrometry-4.0.0-cp39-cp39-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

astrometry-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

astrometry-4.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.0.0-cp39-cp39-macosx_11_0_arm64.whl (569.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

astrometry-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl (667.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

astrometry-4.0.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

astrometry-4.0.0-cp38-cp38-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

astrometry-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

astrometry-4.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.0.0-cp38-cp38-macosx_11_0_arm64.whl (569.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

astrometry-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl (667.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

astrometry-4.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

astrometry-4.0.0-cp37-cp37m-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

astrometry-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

astrometry-4.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (667.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

astrometry-4.0.0-cp36-cp36m-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

astrometry-4.0.0-cp36-cp36m-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

astrometry-4.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

astrometry-4.0.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

astrometry-4.0.0-cp36-cp36m-macosx_10_9_x86_64.whl (667.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file astrometry-4.0.0.tar.gz.

File metadata

  • Download URL: astrometry-4.0.0.tar.gz
  • Upload date:
  • Size: 496.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for astrometry-4.0.0.tar.gz
Algorithm Hash digest
SHA256 01267f283a8fef715ee761602f8bfb1f5bc2ae929afbddd05d86a1ec0966ccd6
MD5 ba81e739cdd3de50f8947878476bec0f
BLAKE2b-256 8bc2b1f5b943c95112279a56bad41411a468db14a7271fb786a7e4ef0ee16e2c

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 944335f283dbf8e1bec7b09d7ba63759569f8d6e2f1c9fe427e5ded483056b2c
MD5 ab8739a1a5e57c4087987929753c1de7
BLAKE2b-256 58a4374cba74619eff014496313c5dfe66b7f4f155f972941ec7def1942972ea

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4decc99875f99748e4ce1f6e8c8024ea84ecb18ef5f55f2cae928a644ba19944
MD5 373755e77992ade5b47fd462ab669413
BLAKE2b-256 ef828b50a561ec7b2b63449f071752142320f5eb079b409dfb1e31effe191963

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 46e1ef65ff891c2b40c6ceb3fea729f208f85520e17a1663680711e15d2d4267
MD5 07ae311e4d225f431b186b568d379f42
BLAKE2b-256 68771df78fcd3917d8ce16ae1b14f5b86e9a8f1ccf208314de8a59185c549fd9

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 461fec4fbe0b3f6145a45514df93e08617d0f43f4ccf6aacd4e40ebcf9cf133e
MD5 ad7eeac191acc97e11a3106ec7b31711
BLAKE2b-256 2d9c25f6c98cd25b80e691cc7d2e67a2775d501a60a1f8ea08d3f6bd2cd1a8c0

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 58a8e9d23cf1c924bbb7717ccb4a495d0817d8db50be3c241e254b3d76b31a03
MD5 ef175789265f697b33fecc55756dfc01
BLAKE2b-256 a1a706b07cf39531f4644689105d53682fbe73b4fd234b04a2d24948cbd58b66

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c490cb30bdaa08788c0d3404ac4cb542db009b7058c3e0586912d3734095d17e
MD5 a47c8b45d3d5d8150c78a20f146371cb
BLAKE2b-256 1fb7c3377ad2dbf8b551c1af5f4f3bc666ed1e794b587fa50bace802530069e3

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 539f8dcb55bd3584d37e69bce531ca1c20282be0781cde896e0a0f803ef4912b
MD5 9b49ceb8d842dfe6a801ef4c32597b1c
BLAKE2b-256 1e94f91f1db5718347c15787b8e814dd8ef9a636a372eee94fbe23b67d4b0f7b

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 03b20374d2bd6ea57ef1cdce6a80bb0f2d0f5540eac2251b4286ae731f590189
MD5 8f5a42f770931e21d005040fcf3c2c50
BLAKE2b-256 6e56dc64e3ebbb0631c6e277680e4d15fda7d8e2ede1b30ecda51888c281816c

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 37aadfe1c961d1204f0c24ab8c1da8823668eca20900c2fee01c5e85654b2d84
MD5 4a53c0bad88d91588314504500ddd08d
BLAKE2b-256 8415c5786757f26d18342aa26f5dcc3aef83a3ebe5085127ea29b114f85f3feb

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3916f43e68f870c5d3b67bb2ea4ea8c27fef904f9fbffe0c22850737655d8d8c
MD5 9849d510c09fe0119e6e102b4b52d633
BLAKE2b-256 0fa3ab16e6f98da44d6216361156d6955b46253a65a33ec534d390b09e2de27b

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e900186b219bb126dc52ed44f7e59b4472ebff0e9dbebe3bd224569035d73fcf
MD5 9979548fc152f3d6ab0d9b4a49af5678
BLAKE2b-256 2f21830b18d93d2934c29062a532ee587106e7727fdac5c6ba3c0094541923f7

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2afa65150f0c2ab3cffbae71c47e16ead3e1f8c0c0f9d6a5b8d7da0c67dca565
MD5 18f5405c3aa51b74bd29335793b864f3
BLAKE2b-256 4fc887864bdec1b5acfc620589bfbb509ed70138e36407ba5369763c3b00c278

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ff04a341b3bb2a3da2fae0917fbc8ac449aa1dce5859cb36728ffa44c5cd9d2d
MD5 f7179aebe9cdc3ebafb9db84b5f8eb1f
BLAKE2b-256 55136421f53e26c811da14d1c7cfbaf3536383f5e80167ad0becacb56a3428b6

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12b2e7f393087c895c4a2c607185ad52b8893b1f85c88796fae1beb7665bdcdc
MD5 786a86fcb08f395f83a8b04dd81ea14f
BLAKE2b-256 2e393ced7c2f0f6b014b420de1a4ef5ee67256503f944c209c1989d099c8aa55

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e650c05bfdd1ad8302509253dde3343673077542c179096a30af019cf2150f1
MD5 fd94a1669b9a9f37d5856ac44d18f5c8
BLAKE2b-256 bd79e18521031ca057e4ea0e7e655d4b48b04d43c159ec2e009a8984c7811c7c

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2f5e7eeb0a0d193b7217170d7ba74c6fbb64603928fbe8caca5ff9dcffda8093
MD5 ebe8b0fb5f634431a82a006d14c24100
BLAKE2b-256 a0af313b10dea8dc7af865d7689b7ac30a2215774ae0c9d4d896f5bc3b517ffc

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2fcaf8060b10593844597acd472e9ba3e863bf0044d8d4a43b50be1286223626
MD5 32e97e123a94635757412da0414d3338
BLAKE2b-256 984dc1accd46090a2fefbde701811291b9dd5dcc3ad7cb6a6dbe17a08809bfa7

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b09b704bf80f17bd335033769bc3ad6631865a1b49c3e6c43dbe142f10dd3d5
MD5 9efd17386f430a98646bd1537bfd42ec
BLAKE2b-256 99638689fb64b951e0e14b9d535b3df095e5a3c963281b4eed54c688d4d4ec9d

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6908a3916d5724d064f0e4483ad67cf16d353b5872ee7c0f51998369e92610b0
MD5 927528c56455f3d7da9dcc12a758dbea
BLAKE2b-256 8bd1fde7dc6cca19edcff18690316b46b005f45937e3b2a2335abb6e923e151e

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c85519ce09b5529a82916dc96bc0278c1bfa2eb37c932479efbd491ca7c0ebdb
MD5 ffa0bb953d30598366856d7bf917b0e8
BLAKE2b-256 63adf2240b866e41d9914991348af419af23e1f260e3909e6c843398bede2925

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a887a1ff00bf3cc3534aa4372f640ec61f105610e44a67e89ad3133668aae759
MD5 9662a51467b2afdf0e2cff4ca3ffad46
BLAKE2b-256 58ed44071fd5f669fed2ee4379d22ad5972bed0470f11fa9a341b0462e3bfc9c

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7df140c5bc97a20e668362601becc935efe9a5b64c37b822d7089e29b14f4654
MD5 aa313a7a79d3c9824c7166dfd54bda16
BLAKE2b-256 ad6ca9fabcb5727e592d47a6df5004eaaec1ca0064d936a05158619c6c5825b5

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2a158ba212744ca479cb41a3b17904f8633b2a0d8bf5b908febcd806f3374470
MD5 3ffefd2ee67fd9c3293afab8ed395600
BLAKE2b-256 4fa6a40d39be24beec532de1c91d20de460db7c1b79222b580638213c1cd3548

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e3f15810fbd938285b3c7584bb86f7cc2c474206b244fb565a45c7300359a875
MD5 01b6de542faaf31260ac7c014cbfc725
BLAKE2b-256 885fa26941e73a7ba2530715c0bde75034e557a450e960e0c9c29d7b698b4d20

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e5073722fbbe68ce1593b3dcc0c91d18277c9cc7e6e300a4a522136136c97d03
MD5 a4accd5aef1988276eec5e29b172fa51
BLAKE2b-256 f5e9e9b56e631fb3487364c9e948c390b05a7c3cb8b2f765450915c7f58600fb

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 075fa6883ed389e14535131ccd2fa2a771920e53b47cd21d9fcb1db1c26c50a2
MD5 ec442100ec5a8a33f0d9c75ac403ee0a
BLAKE2b-256 aa36262202ffeceee88c6bfa003b90f742e6e694eb21ba07559b96fab327b02b

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eed674215c07b20d250101bb5d43fac9036990e37dfe4314e4c6f91447d48194
MD5 04944dfe1789f81d5cc73d8f826c76b0
BLAKE2b-256 f9f8d44115f8a3a459de92942eb27c179c3dd742aa6fe202c63a0ec452524c01

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 590b32540bfa530fa4f8077300f7e7f555b6979fc711a5c1e3acc411acd03c90
MD5 58b2b7a4c4cde32d8f84757865f1edc2
BLAKE2b-256 bbace2e5de1bbebd024bb1622874ce99ddb0243ef3413c47055cd05cfef99e61

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9e22b6b4d491e344b075a10a184550b886dc51dbbb1889251cd607aa81595f21
MD5 25f4f17ba5e34e387359479ceb52a58a
BLAKE2b-256 16e090c45bbb80834c0babf5928e3695f9e62de2d260287d921f0fe09f416921

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0d64483879af05bafdaa930ef32d66509f1edfbf72db8dcab7c57331052db16
MD5 3f1fe72279814e9560a19a262ba32504
BLAKE2b-256 1ee9fc6d9caaa4090ac5f42a3658aa1aaa5848512b01f5a2d30eebb51b46943f

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 94c53d13126d7618fa208b324ca01721cd9a927db4e925a9595e744dbd68f65d
MD5 8763b737724ac1389aa1cef56abf82a2
BLAKE2b-256 e3e199eecf02d0fbcb7e02ed9d45f0a511d2ecc7279c0bb45ac89a9e0f5dbdae

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c149aaa633a08e3fd3d81fbc14c6b095628f5fa30e9c25d14dea7faadb9e4232
MD5 b8697be432cf2fb6597a56068b96ba6f
BLAKE2b-256 28d8910f375ac5b2d62ae51cdf6339d127d17bb3782065157094799f7a96abcc

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14666e198d61811995bd7ead2c88ea4d61823eabf1a28693fcba57cc340c4035
MD5 ab4cb8db18f59e88790a03376f7375ac
BLAKE2b-256 a0ddde8e99c8b63b5f7bd33a1db8564d9c971cd22bd96b952afbfa32a1377b04

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 db9c92ca700cf12f0b51d95b2d87617895edf8d88a0df1bc1e514e094fc86203
MD5 0c692dfef8ef10dc09ebd458d6209503
BLAKE2b-256 125df46df25bd559adf7a62e137f8ee2cecb5b591f25d77be22c2c1a5c514a5a

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 49ae2848a53eb15120c6f35c50ee4f2a7cf209d05d1c698d23b6632a3e3fdffd
MD5 f392642432e5ed601fc0ad03b88e0247
BLAKE2b-256 4b0ec8cc1ac93572f2334babea5186b75a9f21354a0b00b1342e808b1be17c9c

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae2212e0849b4878cbe8996df108095d819f3f33d8e6e5d588e880071b05ec26
MD5 ac0c5e8b8b5d9a9994d28521d2126847
BLAKE2b-256 e2ea7ae1b766ff6345618e4f01c13add5a38079d55d4b7972fd50e7edea5f95f

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6939654ff5c3c321f32e84be2bcc4d02e22deba94332d5e04f70ccacc74c8d6b
MD5 177acb05df3ff17e0978d91715a4f87b
BLAKE2b-256 c7f95dfb20f2e607b8a533caf643b160b106724d662ad1a4b31c01e0a99b5b0d

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b44009d43ff9d434a93f174f1966e96ca18fe329eab1b34fb40a1a9ef90a79a
MD5 8e30f0295d45de8c75e9953cdbbaaa59
BLAKE2b-256 1a8914dd9e5b00c14f18458a42a12d11c90bc4a1769740dc567ce6128ab06cd0

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 df081ae40463588277e337d871233f9ad5a61988693cb6fc14f0e5cd302ba031
MD5 d545e57c250c1e30e72b9f87dd30593f
BLAKE2b-256 924cc9dbb39402844ef1618a3f8cc22318f0b4e2c2e54cce9e75a78a4094b215

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 88e7de779f3fa0542bb5b36015eb181013c6d12aca203660d2ad18205bd8fae1
MD5 c41b25df81089042781f0bb86293b45e
BLAKE2b-256 04b7789ce7e28e815f06a3574182ce288abb3b8f8fdf8118ff78263fe9100291

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e7675b080fca8b3ac38b48ee39453456955d432b9a99bab606dfcd3eb266eb5
MD5 e1ca96a646d0118f61b7784e6d7cb27f
BLAKE2b-256 7563204f697f9a2a2c910fb5a2c8e3df239d310d322d958ef6844c789d760993

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fe5cd40e7cf9a5387a4c235aa000d6d1f2e425150eec7d43863416ef5da27453
MD5 0b9de49ed23bdedfcc680e12d6007ea8
BLAKE2b-256 f42c93fce3e0d3cf8c99e90716cae18f70f81b76d46fc7f224daba3147e60c0b

See more details on using hashes here.

Provenance

File details

Details for the file astrometry-4.0.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for astrometry-4.0.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 339bd277a710c780787de06d44ae434ce41e14713971372a6f2697a550e21735
MD5 94a2f83b739409782af2af9db3f6149b
BLAKE2b-256 27e77ead3867fa298e28897b619f2bac066356aa0f38a59810fd01ff1741671b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page