Applies ATLAS style to matplotlib plots
Project description
atlasify
The Python package atlasify
applies the ATLAS style to matplotlib plots. This includes
- Switching to Arial font (not Helvetica since it's not widely available),
- Adding ticks on all edges,
- Making ticks to inward,
- Adding the ATLAS badge with optional labels (e.g. Internal),
- Adding a description below the badge, and
- Moving the ATLAS badge outside the axes area.
Quickstart
The package will use Helvetica. The package ships with GPL-licensed Nimbus Sans L as a fallback.
The atlasify
package can be installed using pip.
pip install atlasify
# or
pip install https://gitlab.cern.ch/fsauerbu/atlasify/-/archive/master/atlasify-master.tar.gz
Usage
To apply the basic style, simply call the method without any arguments.
import matplotlib.pyplot as plt
import numpy as np
from atlasify import atlasify
x = np.linspace(-3, 3, 200)
y = np.exp(-x**2)
plt.plot(x, y)
atlasify()
plt.savefig("test_1.pdf")
Label
If the first argument is a string, e.g. Internal
, it is added after
the ATLAS badge.
plt.plot(x, y)
atlasify("Internal")
plt.savefig("test_2.pdf")
Subtext
The second argument can be used to add text on the second line. Multiple lines are rendered independently.
plt.plot(x, y)
atlasify("Internal",
"The Gaussian is defined by the\n"
"function $f(x) = e^{-x^2}$.\n")
plt.savefig("test_3.pdf")
Enlarge
Usually there is not enought space for the additinal ATLAS badge. By
default, the method enlarges the y-axis by a factor of 1.3
. The factor can
be changed with the enlarge
keyword argument.
plt.plot(x, y)
atlasify("Internal", enlarge=1.5)
plt.savefig("test_4.pdf")
Changing ATLAS
Plots for the ATLAS upgrade are not tagged wth ATLAS itself. The text of the badge can be modified via a module constant.
import atlasify as atl
atl.ATLAS = "ITk Strip"
plt.plot(x, y)
atlasify("Test beam")
plt.savefig("test_9.pdf")
Resolution, Font and figure size
The font sizes are defined in module constants and can be changed on demand. Please note that the apparent size of the badge does not change when the resolution is changed. However, the badge appears to be larger when the figure size is made smaller.
In the two following plots with different resolution, the badges take the same fraction of the canvas.
plt.plot(x, y)
atlasify("Internal")
plt.savefig("test_5.png", dpi=72)
plt.savefig("test_6.png", dpi=300)
When a smaller figure size is choose, the badge takes a larger fraction of the canvas.
plt.figure(figsize=(4,3))
plt.plot(x, y)
atlasify("Internal")
plt.savefig("test_7.pdf")
plt.figure(figsize=(4, 4))
heatmap = np.random.normal(size=(4, 4))
plt.imshow(heatmap)
atlasify("Internal", "Random heatmap, Outside badge", outside=True)
plt.tight_layout()
plt.savefig("test_8.pdf")
Example
Real world example histogram showing two Gaussian blobs representing a Z boson background and a Higgs boson signal.
# Unbinned data
Z = np.random.normal(90, 10, size=10000)
H = np.random.normal(125, 10, size=1000)
# Manual binning, or reading from TH1F
bins = np.linspace(50, 200, 31)
Z_counts, _ = np.histogram(Z, bins=bins)
H_counts, _ = np.histogram(H, bins=bins)
plt.figure(figsize=(5,4))
# Drawing shapes
plt.hist(bins[:-1], bins=bins, weights=Z_counts,
label="$Z$ boson", histtype='stepfilled')
plt.hist(bins[:-1], bins=bins, weights=H_counts, bottom=Z_counts,
label="Higgs boson", histtype='stepfilled')
# Styling
plt.xlabel("Mass $m$ / GeV", ha='right', x=0.95)
plt.ylabel("Events / 5 GeV", ha='right', y=0.95)
plt.xlim((bins[0], bins[-1]))
atlasify("Internal", r"$\sqrt{s} = 13\,\mathrm{TeV}$")
plt.tight_layout()
plt.savefig("test_histo.pdf")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.