Data Curation in Polaris
Project description
Auroris
Tools for data curation in the Polaris ecosystem.
Getting started
from auroris.curation import Curator
from auroris.curation.actions import MoleculeCuration, OutlierDetection, Discretization
# Define the curation workflow
curator = Curator(
steps=[
MoleculeCuration(input_column="smiles"),
OutlierDetection(method="zscore", columns=["SOL"]),
Discretization(input_column="SOL", thresholds=[-3]),
],
parallelized_kwargs = { "n_jobs": -1 }
)
# Run the curation
dataset, report = curator(dataset)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
auroris-0.1.1.tar.gz
(151.4 kB
view details)
Built Distribution
auroris-0.1.1-py3-none-any.whl
(29.8 kB
view details)
File details
Details for the file auroris-0.1.1.tar.gz
.
File metadata
- Download URL: auroris-0.1.1.tar.gz
- Upload date:
- Size: 151.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80b235ccada42718722e15da0785ef70afb3078f9324fd1b257868e096effe4d |
|
MD5 | 772aa38c2e1d0bac081ad66374ae0330 |
|
BLAKE2b-256 | df370a34f04b8f3da20f9dc96c68266e2d316364b47965098830513bcbd26030 |
File details
Details for the file auroris-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: auroris-0.1.1-py3-none-any.whl
- Upload date:
- Size: 29.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a555d36b27570cabd462bfeccdbb5ef0226594cd1f0f218ec88f83877d9ee4e5 |
|
MD5 | ff6703e66c1451c5ec67d9b8a2c18d28 |
|
BLAKE2b-256 | 5c3766528e94db92c06676fb9fa64885b4a22672b2be047f7ccf664e03498197 |